ACSL AS A PARALLEL
SIMULATION LANGUAGE

SPECIAL TECHNICAL REPORT
REPORT NO. STR-0142-90-007

January 1990

GUIDANCE, NAVIGATION AND CONTROL
DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60-89-C-0142
Sponsored By

The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY
Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540
DISTRIBUTION STATEMENTA |
Approved for Public Release

T
ais

ALLIS

aa

Contract Data Requirements List Item A004
Period Covered: Not Applicable

Type Report: As Required .

20010823 094 o008

DISCLAIMER

DISCLAIMER STATEMENT - The views, opinions, and/or findings contained in this report are
those of the author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other official documentation.

DISTRIBUTION CONTROL

(1) DISTRIBUTION STATEMENT - Approved for public release; distribution is unlimited.

(2) This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227 - 7013 October 1988.

ACSL AS A PARALLEL
SIMULATION LANGUAGE

January 1990

Thomas R. Collins

COMPUTER ENGINEERING RESEARCH LABORATORY
Georgia Institute of Technology

Atlanta, Georgia 30332-0540

Eugene L. Sanders ' Cecil O. Alford

USASDC Georgia Tech

Contract Monitor Project Director
Copyright 1990

Georgia Tech Research Corporation
Centennial Research Building

Atlanta, Georgia 30332 -

UL9998

1. BASIC FEATURES OF ACSL

By its very design, ACSL is intended for computer simulation of continuous or
continuous/discrete systems. Numerical integration methods are built-in, and provision is made
for all of the interacting physical processes that normally take place in parallel between
integration steps. A well-written ACSL program is inherently modular, making subsequent use
by other programmers much easier. ACSL also has provision for parametric studies, which are
often required in simulations, as well as support for various plots, including time response, gain,
phase, Nichols, and Nyquist plots.

2. PARALLEL PROGRAMMING IN ACSL

It is possible to write simulations in ACSL in such a way that they can be easily ported to the
Parallel Function Processor (PFP), virtually guaranteeing identical output. The procedure to be
followed is described below. In general, it consists of using the ACSL PROCEDURAL
statement to define the parallelism, and it requires no knowledge of the PFP hardware or
software on the part of the ACSL programmer. The PFP programmers will simply verify the
ACSL program on their own workstation, then partition the Fortran code generated by the
ACSL translator. This partitioning is semi-automated at present and can probably be made fully-
automated. '

The focus of the parallel programming process is the DERIVATIVE subsection of the
DYNAMIC section in the ACSL program. The ACSL programmer begins by identifying
sections of code which may be performed in parallel in the ACSL code by surrounding them with
a PROCEDURAL statement and a matching END statement, even if some of these sections
only include one line. Normally, these sections correspond to a functional unit, such as the IMU
or a propulsion system. In the PROCEDURAL statement, all inputs and outputs must be listed.
The ACSL compiler does not check these inputs and outputs for correctness in terms of the
actual statements within the block. Sometimes ACSL programmers use this to their advantage to
force the compiler to sort statements in a certain order, but this cannot be done if the program is
eventually to be run in parallel. This is because we cannot allow the sort order to matter (outside
of PROCEDURAL blocks, which remain unsorted internally).

Any statements which perform integration should not be placed inside PROCEDURAL blocks.
These include the INTEG, INTVC, and LIMINT statements. The integration statements may be
grouped together at the end of the program or each may be placed immediately after the
PROCEDURAL block which calculates the derivative of the variable being integrated.

The result of this process should be a program in which all statements (except integrations) in the
DERIVATIVE section belong to a PROCEDURAL block. One and only one PROCEDURAL
block will have any given variable as an output -- the translator will enforce this. This allows the

translator to sort the PROCEDURAL blocks in absolutely any order, while retaining the exact
ordering of statements within each block. Since the simulation will run correctly with any
ordering, it will also run correctly in parallel. The inputs and outputs given in the
PROCEDURAL statements correspond to variables which are received or sent by that process
over the crossbar interconnection network, so once again the importance of accuracy in these
input/output lists becomes clear: a process will not have access to the required variables if they
are not listed.

Each PROCEDURAL block is equivalent to an ADA task, and the input/output list specifies the
required communications between tasks. Consequently, the PROCEDURAL ACSL
implementation can be viewed as a step in the migration to ADA.

A more subtle aspect of the PROCEDURAL definitions is that, preferably, each
PROCEDURAL block should output only derivative variables (i.e., variables which occur as the
derivative in some integration statement). This allows each block to run in parallel during the
two primary phases of each timestep: 1) derivative evaluation, and 2) integration. This is not a
rigid requirement, and it can be worked around during the porting process.

3. CONVERTING FORTRAN PROGRAMS

Some programs, like EXOSIM, have already been written in FORTRAN, and some effort will be
required to convert them to ACSL. This is not too difficult for several reasons. First, all
FORTRAN subroutines are usable in an ACSL model, probably with no changes. Second, it is
actually possible to eliminate some FORTRAN code, since integration is built into ACSL (and
corresponding routines exist for the PFP). Finally, if the FORTRAN program is inherently
modular, it should translate directly into the PROCEDURAL sections described above.

4. AN EXAMPLE PROGRAM

The example program to be presented here is modified in several stages to illustrate the major
points. The result of each step is given as a listing of the ACSL model and is included in
Appendices A through E. The ACSL program "missil.csl" is taken directly from the examples
given in the ACSL manual. It implements a simple 6-DOF missile with only the basic functional
elements. It has no target model, seeker, guidance law, or autopilot, but it is sufficient to
illustrate the method.

A block diagram of the model is given as Figure 1. The dotted lines indicate the four partitions
which are identified in the following section.

4.1 DEFINING THE MAIN BLOCKS

The statements of missil.csl were rearranged, and PROCEDURAL statements were added to
form four main blocks: ‘

Block 0: motor, aerodynamics, and rotational velocity dynamics

(S94D100SSY 18|UINDS PUD [[BYDHIN ‘IONUD 80U8I8)8Y| 1SV :80us1oal)

[opOW S|Issiul 8jdudIs JO WIBDIP %o0|g :| aIinbiH

auwpy
S|IssIN

oz | oy <

_ soladoid j SOIWDUAP #\ ﬂ SOIWDUAP 4\ _ awnyy
e " uolyisod O AlIOOBA SO ypo3
Al_ ﬁ_o:o_to_mc_o:;; chozo_mcci; o} o
_ Xupow _ ﬁ SOIWDUAP H : ﬁ SOIWDUAP /ﬁx ﬁ H SSON
auwlpyy uolyisod _ ANOOIBA SOIWDUAPOIaY
oE_ _ wiyd VA WM . Ak xx | ® {0ION
Yuog Wy ﬁ_ocozo#ow_ ;) _ ﬁ:oco:o*oa ;; ﬁ L; SO
‘uais ‘ _r ISNIyL
2'po ‘b

Block 1: rotational position dynamics
Block 2: translational velocity dynamics
Block 3: translational position dynamics

This particular partitioning is often effective for 6-DOF models. While the individual degrees of
freedom may be further split out into smaller parallel blocks, it is often not advantageous, since
there is much dependency on certain intermediate variables such as coordinate transformation
matrices and aerodynamic coefficients.

The result of this partitioning is missil2.csl, also in the appendix. See the comments in the header
and note that all changes to the original program are made in lower case. It is clear that very few
changes were made, just some minor rearrangements (and deletions of the original
PROCEDURALS, whose orderings were retained within the new PROCEDURALS).

There was no expectation that missil2.csl would run, however, since a circular definition exists.
Specifically, by looking just at the PROCEDURAL statements (which is all that ACSL does to
determine sort order for this model), it is obvious that NM depends on C, and C in turn depends
on NM. This can be easily rectified by taking the statements which define NM(1), NM(2), and
NM(3) out of block 0 and putting them in block 2, where they more logically belong. This is
shown in the next stage, missil3.csl. This was not done earlier simply because it involved
separating statements that were together in one of the example’s original PROCEDURAL
blocks. A quick inspection of the original program shows that there is no reason why these
statements need to precede the statements which define WMD(1), WMD(2), and WMD(3).

Unlike the intermediate step (missil2.csl), missil3.csl will translate, compile, and run, giving the
same results as the original model and taking the same time to execute. The difference is that the
FORTRAN code generated by ACSL can be ported to four processors on the PFP.

4.2 EMPHASIZING STATE VARIABLES

While this four-processor implementation is usable, it would involve some additional
manipulation, probably manually, in order to set up the appropriate communication channels.
The problem is that missil3.csl does not adhere to the model of generating only derivative
variables as outputs of each PROCEDURAL block. (A corollary to this is that all such blocks
must depend only on state variables, or perhaps on other derivative variables).

The next stage, shown in missil4.csl, shows that it is possible to make this missile model adhere to
the desired form. This usually involves replicating some code sections that generate convenient
intermediate non-state variables that are used in more than one block (in this case, C, CD, and
Q). This probably adds little or nothing to the execution time of the parallel implementation on
the PFP in this case, since the replicated lines are added to block 0, which was relatively simple
(block 2 determined the execution time). After the replication, blocks 0 and 2 are roughly equal

in complexity and one or the other will determine the execution time. This model will also
compile and give the same results, the only difference being that it ports seamlessly to the PFP.

As noted in the comments of missild.csl, there is a simple way to make a slight improvement in
execution time, left as an exercise for the reader.

4.3 CHEATING TIME

One may think that the parallel implementation is not "correct” in the same sense that the serial
implementation is correct, since it relies on "old” data that can be made available to all processors
at the start of each integration step. This is simply not the case! The parallel implementation is a
perfect implementation of proper numerical integration techniques applied to continuous
systems for the purpose of digital simulation. As such, it is correct in the same sense as any
corresponding serial implementation and will yield exactly the same results, assuming that
computational precision is held constant.

The reason for this is that the parallel model relies only upon knowledge of the state variables at
the beginning of each timestep. State variables are those variables which are integrated and thus
contain the entire "memory” of the system. Intermediate algebraic variables are calculated on
each processor as needed, and sometimes these calculations are replicated, as noted above, to
eliminate the need for complex staging of communications.

It is possible, however, to force a little more parallelism into a model by allowing the use of "old"
data. This will almost invariably affect the simulation results, so it must be done with discretion.
The best candidates for this trick are sections of code which are fairly complex, generating
intermediate variables which change relatively slowly over time. As an example, we will choose
the sections of our missile model which calculate atmospheric damping and aerodynamic
coefficients. ’

These sections are pulled out of the same lines of code which were replicated earlier on both
block 0 and block 2. Since they contribute to the heavy processing on these blocks, they are
reasonable candidates for pulling into separate blocks. It also seems reasonable that these
coefficients would not change too much from one time step to the next.

The trick is shown in missil5.csl, in which two new blocks (4 and 5) are created. Each generates
some new "derivative" variables, which are always set to zero. Then, when the "integration” is
performed on the false state variables (C, CD, and Q), their values do not change from what they
were set to inside the block. The result of this is that any block which needs C, CD, or Q gets
their values one step late, but the calculation of these variables takes place in parallel.

This model also compiles and runs, but the results are different, as expected. If one plots the
missile positions and velocities, there are no obvious differences, but listings of actual values for
some variables show that the new model is not identical. When there is any doubt as to the

acceptability of these deviations, this "trick” should not be implemented, and model state
variables should correspond to true state variables in a physical sense.

4.4 REAPING THE BENEFITS

It is possible, though, to keep the original model and still reap many more benefits from parallel
processing. This is accomplished by taking this simple model and gradually adding more
components. Most such components include their own state variables and depend only on other
state variables. A seeker model, for example, would generate some representation of what the
seeker is seeing (the secker state) based upon the relative positions of the target and the
interceptor, which are also states. Since there is invariably some delay between the actual
imaging process and the output of seeker data, there is no problem associated with having to use
the current position states to determine the "next" seeker state. In fact, the delay is normally
much longer than the integration step, so the programmer would most likely deliberately insert
more delay in order to make a good seeker model.

Another example of a component which can be easily added is an IMU, which generates
estimated missile states, generally based on current accelerometer states (which are not the
actual accelerations).

Reasonable seeker and IMU models can be added to the example with absolutely no increase in
execution time, since they can be performed in parallel on two or more additional processors.

A more difficult subsystem to add would be the accelerometers themselves, which must generate
the required acceleration estimates for the IMU. The reason for this is that they are most easily
modeled as a procedure which generates acceleration estimates based on actual accelerations,
but actual accelerations are not states. (In this discussion, we are referring only to rotational
accelerations and velocities, of course.) If we arbitrarily declare the actual accelerations to be
states and then use them as inputs to an accelerometer block, then we are introducing a delay of
one integration time step, which does not accurately model the real system. While this may be
tolerable, it is more reasonable to simply add the accelerometer model to the same block (or
blocks) which calculate the true accelerations. This block would then output estimated
accelerations as new states, in addition to whatever states it already generated. (Previously, this
block probably just integrated the actual accelerations to generate the actual velocities, which it
outputted as states. Now it would output both velocities and estimated accelerations.)

In a complex missile model, there will be many other systems which can be added as new parallel
blocks, like the seeker and IMU above. There will also be a few like the accelerometers, which
must be incorporated into existing blocks in order to maintain an accurate model. If certain
blocks grow to the point where they force execution time to grow to an unacceptable level, it may
be possible to partition them by other techniques. The emphasis here is on a basic way of
partitioning the major elements in such a way that a serial implementation can be transferred
almost effortlessly to a parallel implementation which can be fine-tuned later, if necessary.

S. SUMMARY

A proposal has been made that all simulations intended to be run on the PFP in the near future
be written in ACSL, with some specific guidelines for structure. This has several advantages,

including:
1. Specific identification of parallelism
2. Automatic translation to the PFP
3. Migration path to ADA
4. Built-in integration methods (in ACSL and on the PFP)
5. Support for specialized simulation functions (also in ACSL and on the PFP).

APPENDIX A: MISSIL.CSL (INITIAL PROGRAM)

PROGRAM - MISSILE AIRFRAME MODEL

Weseoonmenecommomnaennn- A GENERIC MISSILE AIRFRAME MODEL IS "
" DEVELOPED USING VECTORS FOR ALL THREE DIMENSIONAL QUANTITIES. "
THIS MODEL WILL RESPOND TO FIN DEFLECTIONS SO REPRESENTING THE "
u OPEN LOOP AIRFRAME RESPONSE AND NEEDS A SEEKER, AUTOPILOT, "
" ACTUATOR, MOTOR AND TARGET MODULE IN ORDER TO EVALUATE GUIDANCE"

" EFFECTIVENESS "
INITIAL
ALGORITHM IALG = 4
MAXTERVAL MAXT = 0.010
NSTEPS NSTP =
CINTERVAL CINT = 0.020
Wevesommocaunonnoomnnnon SET UP IN CASE DICTIONARY REQUIRED *
LOGICAL DICTDM $ CONSTANT DICTDM = .FALSE.

IF(DICTDM) CALL LISTD(5)
DICTDM = .FALSE.
------------------ PASS STABILITY DERIVATIVE MATRIX TO THE "
" COEFFICIENT GENERATION SUBROUTINE *
CALL INIT(A)

END $" OF INITIAL "

DYNAMIC
DERIVATIVE
s ENVIRONMENT MODULE "
Mecommmmccennannncncanan DEFINE ARRAYS AND CONSTANTS FOR MODULE ™
CONSTANT G = 32.
----------------------- VELOCITY OF SOUND - FUNCTION OF ALTITUDE *
TABLE vs, 1, ves
7 0.0 , 1.066" , 2.084 , 3.0E4 , 4.0E4 ...
, 5.064 . 6.0E4 ., 7.0E4 ., B.0E4 , 9.0E4 ...
' 1i86.5 | 1077.4 ., 1036.4 , 994.8 , 968.1 ...
1 968.1 , 968.1 970.9 . 977.6 ., 984.3 /
Hooooomnemmnacaeancnnan LOG OF ATMOSPHERIC DENSITY ¥
TABLE LRO, 1,

/ 0.0 . 1.0e6 , 2.0e4 , 3.0E4 , 4.0E&4 ...
, 5.0e4 , 6.0E4 7 0E4 8.0E4 ' " 9.0E4 ...
,-6.04191 , +-6.34502 -6 67084 -7 02346 ,-7.43995 ...
,~7.91851 , "-8.39664 ,-8.87953 1-9.36448 ,-9.87239/

L e CALCULATE ACTUAL ATMOSPHERIC DENSITY "
RO = EXP(LRO(RM(2)))

e ELLLREEEEERR PP MISSILE AIRFRAME MODULE "
Meoommcceoeenonnosaeee DEFINE ARRAYS AND CONSTANTS FOR_MODULE "

REAL ME(9), VMM(3), NM(3), NME(3), DL(4), CD(3), C(6)
REAL VM(3), VMD(3), VMIC(3), RM(3), RMD(3), RMIC(3)
REAL WM(3)) WMD(3), WMIC(3), A(30)
Weceonsesoncocconcnecana MISSILE DIMENSIONAL CONSTANTS "
CONSTANT B = 3.95 , CBAR = 5.62
CONSTANT s = 13,9 ' DXREF = 9.60
CONSTANT DL = 4%0.0

----------------------- INITIAL CONDITION VALUES ¥
CONSTANT SIMIC = 0.0 , THMIC = 0.0
CONSTANT FIMIC = 0.0 ' wMIC = 3%0.0
CONSTANT VMIC = 2154.8

CONSTANT RMIC
----------------------- ‘DEFINE ELEMENTS OF STABILITY DERIVATIVE "
¥ MATRIX. LINEAR AERODATA 1S ASSUMED FOR SIMPLICITY IN SUBROUTINE"
u COEFF. NON-LINEAR AERODATA MAY BE INCORPORATED BY REWRITING "

" THIS SUBROUTINE "

CONSTANT A= ...
0.148 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 vee
, 0.0 '-0.26 | 0.0 1 0.0 ' 0.0 1-0.286 ...
. 0.0 V0.0 '-0.26 . 0.0 1 0.286 . 0.0. ...
0.0 ' 0.528 |, 0.0 ' 0.0 ' 0.0 1 2.0 ..
' 0.0 . 0.0 . 0.528 , 0.0 1-2.0 . 0.0
e ROLL DAMPING - FUNCTION OF MACH NUMBER "
TABLE CLP, 1,5 ...
/0.0 . 0.8 , 1.0 , 1.2 , 2.0 .ee
,-0.21 .-0.21 ,-0.20 ,-0. 7-0.18
Meeemeeeemalenad —mm-nt PITCH DAMPING - FUNCTION OF MACH NUMBER "

/ 0.0 0.8 . 1.0 , 1.2 , 2.0 .o
,-3.8 -2 0 ~1.5 ,-2.0 -2.1 /
Weoooocnvuoomanocnconnnn MAGNITUDE OF MISSILE VELOCITY *
MVM = SQRT(DOT(VM, VM))

Hecooouccooccnacannennnn MAKE *ME* MATRIX FROM ORIENTATION ANGLES "
CALL MMK(ME = FIM, 1, THM, 3, SIM, 2)
----------------------- ROTATE VELOCITY TO MISSILE FRAME "

ME)
----------------------- LATERAL AND VERTICAL ANGLES OF ATTACK "

ALZ = ATAN(-VMM(3)/VMM(1))

AL3 = ATAN(VMM(2)/VMM(1))

e L B Rt MACH NUMBER AND DYNAMIC PRESSURE *
MACH = MVM/VS(RM(2))

Q = 0.5*RO*MVM**2

Meoeaommaeccncaonacens CALCULATE DAMPING DERIVATIVES "
PROCEDURAL (CD, = MVM, MACH, WM)

CD(1) = 0.5*CLP(MACH)*B*WM(1)/MVM

CCVW = 0.5*CMQ(MACH)*CBAR/MWM -

CD(2) = CCVV*WM(2)

€0(3) CCVV*WM(3)
END $" OF PROCEDURAL
----------------------- GET MOMENTS AND FORCE AERO COEFFICIENTS "
" AND CORRECT LATERAL MOMENTS FOR SHIFT IN CENTRE OF GRAVITY "
" POSITION "
PROCEDURAL(C = AL2, AL3, DL, MACH, DXCG, DXREF)
CALL COEFF(C = AL2, ALS, ol, Mach)
C(2) = C(2) - (DXCG - DXREF)*C(6)/CBAR
C(3) = C(3) + (DXCG - DXREF)*C(5)/CBAR
END $" OF " PROCEDURAL % !
----------------------- CALCULATE ACCELERATION DUE TO AERODYNAMIC!
" EFFECTS AND ROTATION RATE DERIVATIVES ®
PROCEDURAL(NM, WMD = Q, C, CD, WM, MASS, IXX, IYY)
NM(1) (Q*s*C(4) + THRUST)/MASS

NM(2) = Q*S*C(5)/MASS

NM(3) = Q*S*C(6)/MASS

WMD(1) = Q*S*B*(C(1) + CD(1))/IXX

HMD(Z) = Q*S*CBAR*(C(2) + CD(2))/IYY + WM(1)*WM(3)

WMD(3) Q*S*CBAR*(C(3) + CD(3))/1IYY - WM(1)*WM(2)
END $" OF PROCEDURAL "
© Mecacccecnesamcccccoceonn ROTATE ACCELERATION VECTOR TO EARTH FRAME™

E)

----------------- CALCULATE VELOCITY DERIVATIVES IN THE "
" EARTH FRAME - NEEDS GRAVITY ADDING IN "
PROCEDURAL(VMD = NME, G)

VMD(1) = NME(1)

VMD(2) = NME(2) - G

VMD(3) = NME(3)
END $" OF PROCEDURAL *

---------------------- YAW ANGLE DERIVATIVE *

SIMD = (WM(2)*COS(FIM) - WM(3)*SIN(FIM))/COS(THM)
Meococeonmomncmcccnnnnnn INTEGRATE FOR ALL EULER ANGLES - NOTE USE"
" OF VECTOR INTEGRATOR FOR SINGLE ELEMENT "
SIM = INTVC(SIMD, SIMIC)

THM = INTEG(WM(2)*SIN(FIM) + WM(3)*COSCFIM), THMIC)

FIM = INTEG(WM(1) - SIMD*SIN(THM), FIMIC)
Mecooommccemenmomcoacen VECTOR INTEGRATE FOR ROTATIONAL VELOCITY "
WM = INTVC(WMD, WMIC)

Heoocuvoonmmnmccncaonnana TRANSLATIONAL VELOCITY "

VM = INTVC(VMD, VMIC)

fecccusnosssanceocnonnne TRANSLATIONAL POSITION - NOTE THE DERIV- *
u ATIVE VECTOR CANNOT_BE A STATE VECTOR (VELOCITY) AS WELL "

CALL XFERB(RMD = WM, 3)

RM INTVC(RMD, RMIC)

e OO EE RO P LEEE MOTOR MODULE "

ORTEER P TTPPLEPPPL LS SIMPLE VERSION WITH ZERO THRUST SPECIF- "
. YING A BURNT OR GLIDE CONDITION "

CONSTANT THRUST = 0.0 , MASS = 8.77
CONSTANT IXX = 8.77 . 1YY = 361.8
CONSTANT pxcG = 10.2

END $" OF DERIVATIVE "

Meomoocooaoaocooacaan-s STOP ON ELAPSED TIME "
CONSTANT TSTP = 1.99
TERMT(T .GE. TSTP)

END $" OF DYNAMIC *
END $" OF PROGRAM "

SUBROUTINE INIT(C)

C-==----ccccccrcmccoccnmonmnnn FORTRAN SUBROUTINE WHOSE ONLY JOB IS TO

TRANSFER THE STABILITY DERIVATIVE MATRIX TO AN ARRAY IN LABELLED
COMMON SO THAT IT MAY BE ACCESSED IN SUBROUTINE COEFF. NOTE NO

OO0 O O000OOOOO0aoO00O000 oo

O OoOOoOoOaOoOOoOnon

(2]

0O O00O0O0OOaOOOnnn

COMMON BLOCKS MAY BE DEFINED IN THE ACSL MODEL DEFINITION SECTION

COMMON/STABD/ A(6,5)
DATA LENGTH /30 /

Cemmmmmmmmesmmomecccoaccsannns TRANSFER BLOCK
CALL XFERB(C, LENGTH, A)
RETURN

END

SUBROUTINE COEFF(AL2, AL3, DL, MACH, C)
Co---eemsrccaceccomunccannoon~ COMPUTES SIX AERODYNAMIC COEFFICIENTS -
THREE MOMENTS, C(1), C(2) AND C(3), AND THREE FORCES, C(4), C(5)
AND C(6). MOMENTS ARE ABOUT AXES CENTRED AT THE REFERENCE POINT
AND MUST BE CORRECTED FOR CENTRE OF GAVITY SHIFT.

INPUTS

AL2 ANGLE OF ATTACK ABOUT *M2* - POSITIVE WIND FROM LEFT
AL3 ANGLE OF ATTACK ABOUT *M3* - POSITIVE WIND FROM ABOVE
DL ARRAY OF FOUR FIN DEFLECTIONS

MACH MACH NUMBER (REAL)

OUTPUTS

c ARRAY OF SIX AERODYNAMIC COEFFICIENTS

REAL DL(4) , C(6) + MACH

COMMON/STABD/ A(6,5)

----------------------------- COMPUTE EQUIVALENT CONTROL SURFACE DEFL-
ECTIONS FROM THE FOUR SURFACE ANGLES
= 0.25%(DL(3) + DL(4) - DL(1) - DL(2))
DLY = 0.50*(DL(1) + DL(3))
= 0.50*%(DL(2) + DL(4))
----------------------------- COMPUTE EACH MOMENT ASSUMING IT IS LINEAR
IN EACH OF THE ARGUMENTS
Do 110 J =1, 6
Ch)

ACJ,1)*DLA + A(J, 2)*DLY + ACJ,3)*DLZ + A, 4)*AL2

. + A(J,5)*AL3

110 CONTINUE
RETURN

END
FUNCTION DOT (A, B)
Cemmmmememmmcmcccenceannooans COMPUTE VECTOR DOT PRODUCT OF TWO VECTORS.
PROGRAMMER V. B. WAYLAND
INPUTS
A AND B ARE ARRAYS OF LENGTH 3
ouTPUT
DOT IS A REAL FUNCTION RETURNING THE DOT PRODUCT OF A AND B
DIMENSION AG3) , B3
DOT = AC1) * B(1) + A(2) * B(2) + A(3) * B(3)
RETURN

END
SUBROUTINE INV ROT(VIN, RMX, VOUT)
Cemmecmcmeeveccnnanonconacana" INVERSE VECTOR ROTATION. INVERSELY ROTATE

AN INPUT VECTOR, VIN, FROM ONE COORDINATE SYSTEM THRU A TRANSPOSED
ROTATION MATRIX RMX. THE NEW VECTOR IS VOUT.
= (AB)T * A
INPUT
VIN INPUT 3 VECTOR
RMX 3X3 ROTATION MATRIX
QUTPUT
vout OUTPUT 3 VECTOR
DIMENSION VIN(3) , RMX(3,3), VOUT(3)
VOUT(1) = RMX(1,1)*VINC1) + RMX(2,1)*VIN(2) + RMX(3,1)*VIN(3)
VOUT(2) = RMX(1, V2)*VINCT) + RMX(2,2)*VIN(2) + RMX(3,2)*VIN(3)
VOUT(3) = RMX(1, J3)*VIN(T) + RMX(2, 3)*VIN(2) + RMX(3, 3)*VIN(3)_

OO0OOO0O0OOO000000000

OO0

O O0O0O0OOOOOO0O00O00

o000 0

RETURN

END

SUBROUT INE MMK(A NA, B, NB, C, NC, RM)

1A-0 30 DEC 68 MAKE A DIRECTION COSINE MATRIX
---------------------------- ROUTINE GENERATES A DIRECTION COSINE MATRX

BY ROTATING IN ORDER

1)ANGLE C ABOUT THE NC AXIS
2)ANGLE B ABOUT THE NB AXIS
3)ANGLE A ABOUT THE NA AXIS

INPUTS
ANGLES A, B, C IN RADIANS

NA, NB, NC - A NUMBER BETWEEN 1 AND 3 CORRESPONDING TO AXIS
ABOUT WHICH EACH ANGLE 1S ROTATED

OUTPUT

RM -- A 3X3 DIRECTION COSINE MATRIX

REAL AM(3,3) , BM(3,3) , CM(3,3) , RM(3,3)
REAL (9

NOTE FOR FORMING A DIRECTION COSINE MATRIX FROM EULER ANGLES THE
CONVENTION IS TO ROTATE ANGLE PHI ~ ABOUT THE NO. 1 AXIS, ANGLE
PSI ABOUT THE NO. 2 AXIS AND ANGLE THETA ABOUT THE NO. 3 AXIS

----------------------------- GENERATE THE ROTATION MATRIX FOR EACH ANG.
CALL ROTMX C A, NA, AM)
CALL ROTMX ¢ B, NB, BM)
CALL ROTMX ¢ C, NC, CM)

----------------------------- MATRIX MULTIPLY THE INTERMEDIATE MATRICES
CALL MML XY(BM,CM,T)
CALL MML XYCAM,T,RM)
RETURN

END
SUBROUTINE MML XY (X, Y, 2)

----------------------------- MATRIX MULTIPLY ROUTINES FOR TWO 3X3
MATRICES. FIRST ENTRY CONTAINS NO TRANSPOSES

= (X) * (V)
INPUT
Y SECOND 3X3 MATRIX
OUTPUT

2 RESULTING 3X3 MATRIX WHERE
200,0) = XCI,1*Y(1,3) + X(1,2)*Y(2,d) + X(1,3)*Y(3,J)

DIMENSION X(3,3) , Y3,3), 23,3

Z€1,1) = XC1, DAY, 1) + X(1,2)*Y(2,1) + X(1,3)*Y(3,1)
2€201) = XC2,1D*Y(1I1) + X(2,2)*Y(2,1) + X(2,3)*Y(3,1)
2(3,1) = X(3,1)*Y(1,1) + X(3 2)*Y(2,1) + X(3,3)*Y(3,1)
Z(102) = XL D*Y(1.2) + X(1,2)*Y(2,2) + X(1,3)*Y(3,2)
2(212) = X(2,1)*Y(1.2) + X(2,2)*Y(2,2) + X(2,3)*Y(3,2)
2(3.2) = X(3,1)*Y(1,2) + X(3,2)*Y(2,2) + X(3,3)*Y(3,2)
2€1,3) = XC€1,1)*Y(1,3) + X(1,2)*Y(2,3) + X(1,3)*Y(3,3)
2(2)3) = X(2,1)*Y(1.3) + X(2,2)*Y(2,3) + X(2,3)*Y(3,3)
géiuga = XE3,1)%Y(1,3) + X(3,2)*Y(2,3) + X(3,3)*Y(3,3)

END
SUBROUTINE ROTMX(X, I, XM)

1A-0 30 DEC 68 ROTATION MATRIX
----------------------------- GENERATE BY STARTING WITH AN IDENTITY MATX

PUT THE COSINE OF ANGLE X ON THE DIAGONAL AND +SIN(X) AND -SIN(X)

ON OFF DIAGONALS

REAL XM(3,3)

INTEGER I1 7(3), III T(3)

DATA Imrs2,3 ,1/

. JIrt3,1 ,2 /

SX = SIN(X)

CX = COS(X)

11 =11 T(1)

111 = 111 (D)

OO0O0OMONO0OOO0000

END
SUBROUTINE VEC ROT (VIN, RMX, VOUT)

1A-0 25 Nov 68 VECTOR ROTATION
----------------------------- ROTATE AN INPUT VECTOR, VIN, FROM ONE

388$DINATE SYSTEM THRU A ROTATION MATRIX, RMX. THE NEW VECTOR IS

A= (AB) * B

INPUT

VIN INPUT 3 VECTOR

RMX 3X3 ROTATION MATRIX

OUTPUT _

vouTt OUTPUT 3 VECTOR

DIMENSION VING3) |, RMX(3,3), VOUT(3)

VOUT(1) = RMX(1, 1)*VINCT) + RMX(1,2)*VIN(2) + RMX(1,3)*VIN(3)

VOUT(2) = RMX(2.1)*VINC1) + RMX(2,2)*VIN(2) + RMX(2,3)*VIN(3)

xgg5(3> = RMX(3, 1)*VINC1) + RMX(3,2)*VIN(2) + RMX(3,3)*VIN(3)

RN

END

11

APPENDIX B: MISSIL2.CSL

PROGRAM - MISSILE AIRFRAME MODEL

" Modified from missil.csl. *

" Simply defined four procedural blocks correspondin?_to major "
» functional elements within the model. Moved some lines of "

" code to fit the block structure, but did not change any " -

" ordering of statements that were already in procedural blocks."
* once all four blocks were defined, input/output dependencies "
u were explicitly given in procedural statement, and the "

" original procedurals were deleted (ACSL does not allow nested "
" procedurals). "

" This version was not expected to translate, since there is no"
" way to sort the statements. (Note that NM degequ onC, CD,"

" and Q, and that C, CD, and Q depend on NM. This circular re-n
" lationship is not allowed. "

Weseoooomnmemrnconaannns A GENERIC MISSILE AIRFRAME MODEL IS "
» DEVELOPED USING VECTORS FOR ALL THREE DIMENSIONAL QUANTITIES. "
" THIS MODEL WILL RESPOND TO FIN DEFLECTIONS SO REPRESENTING THE "
" OPEN LOOP AIRFRAME RESPONSE AND NEEDS A SEEKER, AUTOPILOT, "
" ACTUATOR, MOTOR AND TARGET MODULE IN ORDER TO EVALUATE GUIDANCE™

n EFFECTIVENESS "
INITIAL
ALGORITHM IALG = 4
MAXTERVAL MAXT = 0.010
NSTEPS NSTP =
CINTERVAL CINT = 0.020
Meomooemcoeacoaaanes SET UP IN CASE DICTIONARY REQUIRED "
LOGICAL DICTDM $ CONSTANT DICTDM = .FALSE.

IF(DICTDM) CALL LISTD(5)
DICTDM = .FALSE.
T RGLEEEECEEEREEE PASS STABILITY DERIVATIVE MATRIX TO THE ®
u COEFFICIENT GENERATION SUBROUTINE "
CALL INIT(A)
END $" OF INITIAL "
DYNAMIC
DERIVATIVE
RO EEE L LT L L LT ENVIRONMENT MODULE "
Mossossscnnnnnnnnnn 3575 DEFINE ARRAYS AND CONSTANTS FOR MODULE "

ceee-ee-eaasseeeasZe2--VELOCITY OF SOUND - FUNCTION OF ALTITUDE "

TABLE vs, 1, .
0.0 , 1.0E4 , 2.0e4 , 3.0E4 , 4.0E4 ...
, 5.0E4_ , 6.0E4 , 7.0E4 , B.0E4 , 9.0E4 ...
. 1186.5 | 1077.4 , 1036.4 , 994.8 , 968.1 ...
1 968.1° , 968.1 . 970.9 , 977.6 , 984.3 /
Moousmamaoocalonaannanat LOG OF ATMOSPHERIC DENSITY ®
TABLE LRO, 1, 1

0 ...
0.0 , 1.0e6 , 2.0E4 , 3.0e4 , 4.0E4¢ ...
, 5.0e6 , 6,04 , 7.0e4 , 8.0E4& , 9.0E4 ...
,~6.04191 ,-6.34502 ,-6.67084 ,-7.02346 ,-7.43995 ...
,~7.91851 ,-8.39664 ,-8.87953 ,-9.36448 ,-9.87239/

S ODECCERTEPLEEEE MISSILE AIRFRAME MODULE "

lecwomonmnannasassossnes DEFINE ARRAYS AND CONSTANTS FOR_MODULE "
REAL ME(9), VMM(3), NM(3), NME(3), DL(4), CD(3), C(6)

REAL VM(3), VMD(3), WMIC(S), RM(3), RMD(3), RMIC(3)
REAL WM(3), WMD(3), WMIC(3), A(30)
Nececsuucocaceswncncnana MISSILE DIMENSIONAL CONSTANTS ¥
CONSTANT B = 3.95 , CBAR = 5.62

CONSTANT s =139 ! DXREF = 9.60
CONSTANT DL = 4%0.0

Mecovescovvocnnncnocnaaa INITIAL CONDITION VALUES "
CONSTANT SIMIC = 0.0 , THMIC = 0.

CONSTANT FIMIC = 0.0 " WMIC = 3%0.0
CONSTANT VMIC = 2154.8, 2*00

CONSTANT RMIC = 0.0, 16000.0, 0.0

----------------------- DEFINE ELEMENTS OF STABILITY DERIVATIVE "
" MATRIX. LINEAR AERODATA IS ASSUMED FOR SIMPLICITY IN SUBROUTINE™
" COEFF. NON-LINEAR AERODATA MAY BE INCORPORATED BY REWRITING "

" THIS SUBROUTINE " '

13

CONSTANT A= ‘e
0.1 ., 0.0 , 0.0 , 0.0 , 0.0 , 0.0 e
, 0. »-0.26 , 0.0 , 0.0 , 0.0 ,-0.286 ...
, 0.0 , 0.0 ,-0.26 , 0.0 , 0.286 , 0.0 .-
, 0.0 , 0.528 , 0.0 , 0.0 , 0.0 , 2.0 .e-
, 0.0 . 0.0 , 0,528 , 0.0 ,-2.0 , 0.0
Mooleelommeeelancoooaell ROLL DAMPING - FUNCTION OF MACH NUMBER *
TABLE cLP, 1,5 ...
/0.0 , 0.8 , 1.0 . 1.2 , 2.0 .
,-0.21 ,-0.21 ,-0.20 ,-0.18
Moeommommooealansoeel PITCH DAMPING - FUNETION OF MACH NUMBER "
TABLE cMa, 1,5 ...
/0.0 , 0.8 , 1.0 , 1.2 , 2.0 .ee
,-3.8 ,-2.0 ,-1.5 ,-2.0 2.1/

"block 0 : motor, aerodynamlcs and rotational velocity dynamics"

WM
"end of block O"

procedural (WMD, NM = CD, C, Q, W)

ZBLOCK=0

ALt LLLE LR MOTOR MODULE *

Weveooomoocancarccccencn SIMPLE VERSION WITH ZERO THRUST SPECIF- "
" YING A BURNT OR GLIDE CONDITION "
CONSTANT THRUST = 0.0 , MASS = 8.77

CONSTANT IXX = 8.77 , 1YY = 361.8

CONSTANT DXCG = 10.2

Nuwasonnnsssonnanmcosans CALCULATE ACCELERATION DUE TO AERODYNAMIC"
1 EFFECTS AND ROTATION RATE DERIVATIVES *
NM(1) = (Q*S*C(4) + THRUST)/MASS

NM(2) = Q*S*C(5)/MASS

NM(3) = Q*S*C(6)/MASS

WMD(1) = Q*S*B*(C(1) + CD(1))/IXX

WMD(2) = Q*S*CBAR*(C(2) + CD(2))/IYY + WM(1)*WM(3)

WMD(3) = Q*S*CBAR*(C(3) + CD(3))/I1YY - WM(1)*WM(2)

end $"of procedural"

Meccoucenomanmcononmnon" VECTOR INTEGRATE FOR ROTAflONAL VELOCITY "
= INTVC(WMD, WMIC)

"block 1 : rotational posn dynamics"

procedural (SIMD = WM, THM, FIM)
ZBLOCK'1
----------------------- YAW ANGLE DERIVATIVE ™
SIMD = (WM(2)*COS(FIM) - WM(3)*SIN(FIM))/COS(THM)

end $"of procedural™

Nosoccennmnnccccenonnnnn INTEGRATE FOR ALL EULER ANGLES - NOTE USE"
" OF VECTOR INTEGRATOR FOR SINGLE ELEMENT *
SIM INTVC(SIMD, SIMIC)

THH lNTEG(UM(Z)*SIN(FIH) + WM(3)*COS(FIM), THMIC)
INTEG(WM(1) - SIMD*SIN(THM), FIMIC)

“end of block m

nhlock 2 : translational velocity dynamics"

procedural(VMD Q,CD,C,ME = NM,FIM,SIM,THM RM, WM, VM)
ZBLOCK—Z
----------------------- MAKE *ME* MATRIX FROM ORIENTATION ANGLES "

CALL MMK(ME = FIM, 1, THM, 3, SIM, 2)
----------------------- CALCULATE ACTUAL ATMOSPHERIC DENSITY "

RO = EXP(LROCRM(2)))
Meeeccenmmmcccaaconaan MAGNITUDE OF MISSILE VELOCITY

MVM = SQRT(DOT(VM, VM))
Wecemcoesemomonnacnoocan ROTATE VELOCITY TO MISSILE FRAME "
CALL VECROT(VMM = VM, ME)
----------------------- LATERAL AND VERTICAL ANGLES OF ATTACK "
ALZ = ATAN(-VMM(3)/VMM(1))
AL3 = ATAN(VMM(2)/VMM(1))
Weeoooooeonommammeoennon MACH NUMBER AND DYNAMIC PRESSURE "
MACH = MVM/VS(RM(2))
Q = 0.5*RO*MVM**2

Meooonoacnnnooacannns CALCULATE DAMPING DERIVATIVES “

CD(1) = 0.5*CLP(MACH)*B*WM(1)/MVM
CcCwv = 0. 5*CMQ(MACH)*CBAR/MVH
€D(2) = CCVV*WM(2)

CD(3) = CCVV*WM(3)

Mocecveococmoneasononann GET MOMENTS AND FORCE AERO COEFFICIENTS "
% AND CORRECT LATERAL MOMENTS FOR SHIFT IN CENTRE OF GRAVITY ¥

W POSITION ™

CALL COEFF(C = AL2, AL3, DL, MACH)

C(2) = C(2) - (DXCG - DXREF)*C(6)/CBAR

C(3) = C(3) + (DXCG - DXREF)*C(5)/CBAR

Weecccmmonmmnconanocaccnn ROTATE ACCELERATION VECTOR TO EARTH FRAME"

CALL INVROT(NME = NM, ME)
""""""""""""" CALCULATE VELOCITY DERIVATIVES IN THE "
" EARTH FRAME - NEEDS GRAVITY ADDING IN "

VMD(1) = NME(1)
VMD(2) = NME(2) - G
VMD(3) = NME(3)

end $" of procedual *
----------------------- TRANSLATIONAL VELOCITY "
= INTVC(VMD, VMIC)
“end of block re

wblock 3 : translational position dynamics"

procedural(RMD VM)

ZBLOCK-3

----------------------- TRANSLATIONAL POSITION - NOTE THE DERIV- "

» ATIVE VECTOR CANNOT BE A STATE VECTOR (VELOCITY) AS WELL "

CALL XFERB(RMD = VM,

end $" of procedural "

- = INTVC(RMD, RMIC) -

"end of block 3"

END $" OF DERIVATIVE *

Meceeacceeeaocnoecen STOP ON ELAPSED TIME "
CONSTANT TSTP = 1.99
TERMT(T .GE. TSTP)

END $" OF DYNAMIC "

END $" OF PROGRAM ¥)

SUBROUTINE INIT(C)
C----==cmsmcccceccsnmnonnmnen FORTRAN SUBROUTINE WHOSE ONLY JOB IS TO
C TRANSFER THE STABILITY DERIVATIVE MATRIX TO AN ARRAY IN LABELLED
C COMMON SO THAT IT MAY BE ACCESSED IN SUBROUTINE COEFF. NOTE NO
g COMMON BLOCKS MAY BE DEFINED IN THE ACSL MODEL DEFINITION SECTION

COMMON/STABD/ A(6 5)
DATA LENGTH /7 30 /

O TRANSFER BLOCK
CALL XFERB(C, LENGTH, A)
RETURN

c
END
SUBROUTINE COEFF(AL2, AL3, DL, MACH, C)
Comememmomcmeemcenoamasesatenn COMPUTES SIX AERODYNAMIC COEFFICIENTS -
c THREE MOMENTS, C(1), €C(2) AND C(3), AND THREE FORCES, C(4), C(5)
¢ AND C(6). MOMENTS ARE ABOUT AXES CENTRED AT THE REFERENCE POINT
¢ AND MUST BE CORRECTED FOR CENTRE OF GAVITY SHIFT.
c INPUTS
c
c AL2 ANGLE OF ATTACK ABOUT *M2* - POSITIVE WIND FROM LEFT
c AL3 ANGLE OF ATTACK ABOUT *M3* - POSITIVE WIND FROM ABOVE
¢ DL ARRAY OF FOUR FIN DEFLECTIONS
c MACH MACH NUMBER (REAL)
Cc
c OUTPUTS
¢ c ARRAY OF SIX AERODYNAMIC COEFFICIENTS
c
. REAL DL(4) , C(6) , MACH
COMMON/STABD/ A(6,5)
c
Coneommoccesecmmmnnnaaaenannan COMPUTE EQUIVALENT CONTROL SURFACE DEFL-
¢ ECTIONS FROM THE FOUR SURFACE ANGLES
DLA = 0.25*(DL(3) + DL(4) - DL(1) - DL(2))
DLY = 0.50%(DL(1) + DL(3))
DLZ = 0.50%(DL(2) + DL(4))
C-evemmmmeesesesatioaa et COMPUTE EACH MOMENT ASSUMING IT IS LINEAR
c IN EACH OF THE ARGUMENTS
po110J=1, 6
Yy = AQ,1

Y*DLA + ACJ,2)*DLY + ACJ,3)*DLZ + A(J,4)*AL2
) + A(J)5)*AL3

14

O O0O0O0O0O0OO0O00O00

O O0O00O0O0O0O0OO0O00O0O0

OOO0O0OO0O0OONO00O000

aOoOoO0O0O0n

15

110 CONTINUE
RETURN

END
FUNCTION DOT (A, B)

-------------------------- COMPUTE VECTOR DOT PRODUCT OF TWO VECTORS.

PROGRAMMER V. B. WAYLAND

INPUTS

A AND B ARE ARRAYS OF LENGTH 3

OUTPUT

DOT IS A REAL FUNCTION RETURNING THE DOT PRODUCT OF A AND B
DIMENSION A(3) . B(3)

DOT = A(1) * B(1) + A(2) * B(2) + A(3) * B(3)

RETURN

END

SUBROUTINE INV ROT(VIN, RMX, VOUT)

-------------------------- INVERSE VECTOR ROTATION. INVERSELY ROTATE

AN INPUT VECTOR, VIN, FROM ONE COORDINATE SYSTEM THRU A TRANSPOSED
ROTATION MATRIX, RMX. THE NEW VECTOR IS VOUT.

= (AB)T * A
INPUT
VIN INPUT 3 VECTOR
RMX 3X3 ROTATION MATRIX
ouUTPUT
vout OUTPUT 3 VECTOR
DIMENSION VIN(3) , RMX(3,3), VOUT(3)
VOUT(1) = RMX(1,1)*VIN(1) + RMX(2,1)*VIN(2) + RMX(3,1)*VIN(3)
VOUT(2) = RMX(1, J2)*VINCT) + RMX(2,2)*VIN(2) + RMX(3,2)*VIN(3)
VOUT(3) = RMX(1,3)*VIN(1) + RMX(2, T3IMVINC2) + RMX(3, Y3)*VING3)
RETURN
END
SUBROUTINE MMK(A NA, B, NB, C, NC, RM)
1A-0 30 DEC 68 MAKE A DIRECTION COSINE MATRIX

-------------------------- ROUTINE GENERATES A DIRECTION COSINE MATRX

BY ROTATING IN ORDER

1)ANGLE C ABOUT THE NC AXIS
2)ANGLE B ABOUT THE NB AXIS
3)ANGLE A ABOUT THE NA AXIS

INPUTS
ANGLES A, B, C IN RADIANS

NA, NB, NC - A NUMBER BETWEEN 1 AND 3 CORRESPONDING TO AXIS
ABOUT WHICH EACH ANGLE IS ROTATED

QUTPUT

RM -- A 3X3 DIRECTION COSINE MATRIX

REAL AM(3,3) , BM(3,3) , CM(3,3) , RM(3,3)
REAL (o

NOTE FOR FORMING A DIRECTION COSINE MATRIX FROM EULER ANGLES THE
CONVENTION IS TO ROTATE ANGLE PHI ~ ABOUT THE NO. 1 AXIS, ANGLE
PSI ABOUT THE NO. 2 AXIS AND ANGLE THETA ABOUT THE NO. 3'AXIS

-------------------------- GENERATE THE ROTATION MATRIX FOR EACH ANG.

CALL ROTMX (
CALL ROTMX (

CM)
-------------------------- MATRIX MULTIPLY THE INTERMEDIATE MATRICES

CALL MML XY(BM,CM,T)
CALL MML XY(AM,T,RM)
RETURN

END .
SUBROUTINE MML XY (X, Y

2)
-------------------------- MATRIX MULTIPLY ROUTINES FOR TWO 3X3

O OO00000OOOO0000

OO0O0O0

OO0 OO0O000000

MATRICES. FIRST ENTRY CONTAINS NO TRANSPOSES

= (X) * ()
INPUT
X " FIRST 3X3 MATRIX
Y SECOND 3X3 MATRIX
OUTPUT
2 RESULTING 3X3 MATRIX WHERE
ZC1,0) = XCL, 1RV (1,0) + X(1,2)*Y(2,d) + X(I,3)*Y(3,J)
DIMENSION X¢(3,3) , Y@3,3), 23,3
2¢1,1) = XC1,10%*Y(1,1) + X(1,2)*Y(2,1) + X(1,3)*Y(3,1)
2(201) = X(201*Y(1.1) + X(2.2)*Y(2,1) + X(2.3)*Y(3,1)
2¢3,1) = X(3,1*Y(1,1) + X(3,2)*Y(2,1) + X(3, 3)*Y(3.1)
2¢1,2) = x<1,1)*v(1,2) + X(1,2)*Y(2,2) + X(1 13)*Y(3,2)
202,2) = X(2,1)*Y(1,2) + X(2,2)*Y(2,2) + X(2,3)*Y(3,2)
2(3,2) = X(3,1)*Y(1,2) + X(3,2)*Y(2,2) + X(3, 3)*Y(3,2)
2(1,3) = X(1,1)*Y(1,3) + X(1,2)*Y(2,3) + X(1 '3)*y(3'3)
2(2,3) = X(2,1)*Y(1.3) + X(2,2)*Y(2,3) + X(2,3)*Y(3,3)
§éguga = X(3,1)*Y(1,3) + X(3,2)*Y(2, V3) + X(3,3)*Y(3,3)

END
SUBROUT INE ROTMX(X, I, XM)
1A-0 30 DEC 68 ROTATION MATRIX

----------------------------- GENERATE BY STARTING WITH AN IDENTITY MATX
PUT THE COSINE OF ANGLE X ON THE DIAGONAL AND +SIN(X) AND -SIN(X)
ON OFF DIAGONALS
REAL XM(3,3)

INTEGER 11 T(3), 111 T(3)
DATA xx T /2, 3 L1/
. 11/73.1 ,2 7
sX = SINCX)
X = COS(X)
1 = 11 (D)
= 111 (D)
XMCI,1) = 1.0
XMCIL11)= 0.0
XM(11,1)= 0.0
XM(1,111)= 0.0
XM(1i1,1)= 0.0
XM(11,I1)= CX
xMe11i, 1in= ex
XMCITLEID) = s
XMCI11,11) = -sX
RETURN
END
SUBROUT INE VEC ROT (VIN, RMX, VOUT)
1A-0 25 NovV 68 VECTOR ROTATION

----------------------------- ROTATE AN INPUT VECTOR, VIN, FROM ONE

sggaoxnnre SYSTEM THRU A ROTATION MATRIX, RMX. THE NEW VECTOR IS
T.
= (AB) * B
INPUT
VIN INPUT 3 VECTOR
RMX 3X3 ROTATION MATRIX
UTPUT
vouT OUTPUT 3 VECTOR
DIMENSION VING3) , RMX(3,3), VOUT(3)
VOUT(1) = RMX(1,1)*VINCT) + RMX(1, 2>*vru<z> + RMX(1,3)*VINC3)
VOUT(2) = RMX(2.1)*VINC1) + RMX(2.2)*VIN(2) + RMX(2,3)*VIN(3)
X2¥6§3) = RMX(3.1)*VINC1) + RMX(3,2)*VIN(2) + RMX(3,3)*VIN(3)

END

APPENDIX C: MISSIL3.CSL

PROGRAM - MISSILE AIRFRAME MODEL

" Modified from missil2.csl " i

" split NM assignments out of block 1 and put them into "

" block 2. This eliminates circular definition that kept "

" missil2 from translating. Note that the NM statements "

" were originally (in missil.csl) within a procedural block, *
" but no dependencies were violated when they were moved to "
¥ block 2. This model runs under ACSL and its output is

" jdentical to that of missil.csl. ®

Wececonocomnoccnacoanaen A GENERIC MISSILE AIRFRAME MODEL IS "
" DEVELOPED USING VECTORS FOR ALL THREE DIMENSIONAL QUANTITIES, "
" THIS MODEL WILL RESPOND TO FIN DEFLECTIONS SO REPRESENTING THE *
" OPEN LOOP AIRFRAME RESPONSE AND NEEDS A SEEKER, AUTOPILOT, "
" ACTUATOR, MOTOR AND TARGET MODULE IN ORDER TO EVALUATE GUIDANCE"

n EFFECTIVENESS "
INITIAL
ALGORITHM IALG = 4
MAXTERVAL MAXT = 0.010
NSTEPS NSTP =
CINTERVAL CINT = 0.020
Meeaanomomcoeeeanconnnn SET UP IN CASE DICTIONARY REQUIRED "
LOGICAL M $ CONSTANT DICTDM = .FALSE.

DICTD
IF(DICTDM) CALL LISTD(5)
DICTDM = .FALSE.
Becoooooremmmcmcnnnncenn PASS STABILITY DERIVATIVE MATRIX TO THE "
" COEFFICIENT GENERATION SUBROUTINE "
CALL INIT(A)

END $" OF INITIAL ®

DYNAMIC
DERIVATIVE

Meeomemmo o cieeee ENVIRONMENT MODULE *

Meecacmcccccccananes DEFINE ARRAYS AND CONSTANTS FOR MODULE "

CONSTANT G = 32.2

PR g VELOCITY OF SOUND - FUNCTION OF ALTITUDE

TABLE Vs ’ cen
7 0.0 , 1.0 , 2.084 , 3.086 , 4.0E4 ...
, 5.066 . 6.0E4 ., 7.0E4 ., 8.0E4 , 9.0E4 ...
' 1186.5 | 1077.4 . 1036.4 ., 994.8 . 968.1 ...
' 968.1" | 968.1 . 970.9 . 977.6 ., 984.3 /

Hecneomoencccncnrecncaan LOG OF ATMOSPHERIC DENSITY ®

TABLE LRO, 1, 10 ... ‘

0.0 , 1.0E6" , 2.0E4 , 3.0E4 , 4.0E4 ...

, 5.0E6 . 6.0E4 . 7.0E4 ., B.OE4 . 9.0E4 ...
1-6.04191 ,-6.34502 .-6.67084 ,-7.02346 ,-7.43995 ...
'-7.91851 |-8.39664 .-8.87953 ,-9.36448 ,-9.87239/

Neveweneveovonsancncncans MISSILE AIRFRAME MODULE "

Meceeeoosonnnnamennnnnen DEFINE ARRAYS AND CONSTANTS FOR MODULE "

REAL ME(9), VMM(3), NM(3), NME(3), DL(4), CD(3), C(6)

REAL VM(3), VMD(3), WMIC(3), RM(3), RMD(S), RMIC(3)

REAL WM(3), WMD(3), WMIC(3), A(30)

Mo eaeee s MISSILE DIMENSIONAL CONSTANTS ®

CONSTANT B = 3.95 , CBAR = 5.

CONSTANT s = 13.9 ' DXREF = 9.60

CONSTANT DL = 4*0.0

Hoeocemmnaonnncenaaans INITIAL CONDITION VALUES "

CONSTANT SIMIC = 0.0 , THMIC = 0.0

CONSTANT FIMIC = 0.0 ' WMIC = 3%0.0

CONSTANT VMIC = 2154.8, 2*0.0

CONSTANT RMIC = 0.0, 10000.0, 0.0

----------------------- DEFINE ELEMENTS OF STABILITY DERIVATIVE ¥
" MATRIX. LINEAR AERODATA IS ASSUMED FOR SIMPLICITY IN SUBROUTINE"
" COEFF. NON-LINEAR AERODATA MAY BE INCORPORATED BY REWRITING "

" THIS SUBROUTINE "
CONSTANT

A= e

. , 0.0 . 0.0 , 0.0 , 0.0 , 0.0 vee
, 0.0 ‘-0.26 . 0.0 ' 0.0 ' 0.0 '.0.286 ..
’0.0 ' 0.0 '.0.26 0.0 ' 0.286 . 0.0 ..
' 0.0 ' 0.528 ., 0.0 ' 0.0 ' 0.0 ' 2.0 ..

, 0.0 , 0.0 , 0.528 0.0 -2.0 0.0
Moaloooomonootaaaaanen ROLL DAMPING - FUNCTION OF MACH NUMBER "
TABLE CLP, 1,5 ...

/7 0.0 , 0.8 1.0 , 1.2 , 2.0 e

,~0.21 ,-0.21 -0 20 -0.19 ,-0.18 /
Momacaecacelococaaes PITCH DAMPING - FUNCTION OF MACH NUMBER "
TABLE cMa, 1, 5 ...

/7 0.0 , 0.8 , 1.0 , 1.2 , 2.0 ceo
,-3.8 ,-2.0 <15 ,~2.0 ,~2.1 /

"block 0 : motor, aerodynamics, and rotational velocity dynamics"
procedural(HND =CD, C, Q,

ZBLOCK=0

MWecsconnmnoocnnnnn- by MOTOR MODULE "

Wescocommncoecnnaononone SIMPLE VERSION WITH ZERO THRUST SPECIF- "
" YING A BURNT OR GLIDE CONDITION "

CONSTANT THRUST = 0.0 , MASS = 8.77

CONSTANT IXX = 8.77 , 1YY = 361.8

CONSTANT DXCG = 10.2

Mocconmmmmcceennonnmacen" CALCULATE ACCELERATION DUE TO AERODYNAMICH
" EFFECTS AND ROTATION RATE DERIVATIVES "
WMD(1) Q*S*B*(C(1) + CD(1))/IXX

WMD(2) = Q*S*CBAR*(C(2) + CD(2))/IYY + WM(1)*WM(3)
= Q*S*CBAR*(C(3) + CD(3))/1YY - WMC1)I*WM(2)
end $"of procedural"

Heccsascsccssssessaccs== VECTOR INTEGRATE FOR ROTATIONAL VELOCITY *
= INTVC(WMD, WMIC)
“end of block 0"

uplock 1 : rotational posn dynamics"
procedural(SIMD = WM, THM, FIM)
ZBLDCK—1
----------------------- YAW ANGLE DERIVATIVE *
SIMD = (WM(2)*COS(FIM) - WM(3)*SIN(FIM))/COS(THM)

end $"of procedural”

Bececancncccooncccccceen INTEGRATE FOR ALL EULER ANGLES - NOTE USE"
" OF VECTOR INTEGRATOR FOR SINGLE ELEMENT "
SIM INTVC(SIMD, SIMIC)
THM INTEG(HM(Z)*SIN(FIM) + WM(3)*COS(FIM), THMIC)
INTEG(WM(1) - SIMD*SIN(THM), FIMIC)
tend of block m

uhlock 2 : translational velocity dynamics"
procedural(VMD Q,CD,C,ME = FIM,SIM,THM,RM, WM)
ZBLOCK 2
----------------------- MAKE *ME* MATRIX FROM ORIENTATION ANGLES "
CALL MMK(ME = FIM, 1, THM, 3, . 2)
----------------------- CALCULATE 'ACTUAL ATMOSPHERIC DENSITY ®
RO = EXP(LRO(RM(2)))

Moeemocoomeraanaaeee MAGNITUDE OF MISSILE VELOCITY ®

MVM = SQRT(DOT(VM, VM))
[} DR A Dy ROTATE VELOCITY TO MISSILE FRAME "
CALL VECROT(VMM = VM, ME)

----------------------- LATERAL AND VERTICAL ANGLES OF ATTACK "
ALZ = ATANC-VMM(3)/VMM(1))
AL3 = ATAN(VMM(2)/VMM(1))
(DO MACH NUMBER AND DYNAMIC PRESSURE "
MACH = MVM/VS(RM(2))
Q = 0.5*ROYMVM**2
TR g CALCULATE DAMPING DERIVATIVES "
co(1) 0.5*CLP(MACH)*B*WM(1)/MVM
cevv 0.5*CMQ(MACH)*CBAR/MVM

€0(2) = CCVV*WM(2)
= CCVV*WM(3)
Meeommcoeaaoan GET MOMENTS AND FORCE AERO COEFFICIENTS "
"W AND CORRECT LATERAL MOMENTS FOR SHIFT IN CENTRE OF GRAVITY ®
“ POSITION "

CALL COEFF(C AL2, AL3, DL, MACH)
C(2) = C(2) - (DXCG - DXREF)*C(6)/CBAR
C(3 = C(3) + (DXCG - DXREF)*C(5)/CBAR

"----next three lines have been moved from posn in missil2"
NM(1) = (Q*S*C(4) + THRUST)/MASS

NM(2) = Q*S*C(5)/MASS
NM(3) = Q*S*C(6)/MASS
"""""""""""" ROTATE ACCELERATION VECTOR TO EARTH FRAME"

E)
-------------------- CALCULATE VELOCITY DERIVATIVES IN THE "
" EARTH FRAME - NEEDS GRAVITY ADDING IN "

VMD(1) = NME(1)
VMD(2) = NME(2) - G
VMD(3) = NME(3)

end $" of procedual "
----------------------- TRANSLATIONAL VELOCITY "
= INTVC(VMD, VMIC)
“end of block 2“

ublock 3 : translational position dynamics"

procedural(RMD = W)

ZBLOCK'3

----------------------- TRANSLATIONAL POSITION - NOTE THE DERIV- "
w ATIVE VECTOR CANNOT BE A STATE VECTOR (VELOCITY) AS WELL *
CALL XFERB(RMD = VM, 3)
end $" of procedural "
INTVC(RMD, RMIC)

“end of block 3v

END $" OF DERIVATIVE *

Momomomcceacaeceeaenen STOP ON ELAPSED TIME "
CONSTANT TSTP = 1.99
TERMT(T .GE. TSTP)

END $" OF DYNAMIC "

END $" OF PROGRAM “ .

SUBROUTINE INIT(C)
C----<ccccmmrnceconccconnmcnn- FORTRAN SUBROUTINE WHOSE ONLY JOB IS TO
TRANSFER THE STABILITY DERIVATIVE MATRIX TO AN ARRAY IN LABELLED
COMMON SO THAT IT MAY BE ACCESSED IN SUBROUTINE COEFF. NOTE NO
COMMON BLOCKS MAY BE DEFINED IN THE ACSL MODEL DEFINITION SECTION

COMMON/STABD/ A(6,5)
DATA LENGTH / 30 !/

----------------------------- TRANSFER BLOCK
CALL XFERB(C, LENGTH, A)
RETURN

[21g] [2123212]

(]

END

SUBROUTINE COEFF(ALZ2, AL3 DL, MACH, C)
C----=-------ecveccomncacuonann OMPUTES SIX AERODYNAMIC COEFFICIENTS -
THREE MOMENTS, C(1), C(Z) AND C(3), AND THREE FORCES, C(4), C(5)
AND C(6). MOMENTS ARE ABOUT AXES CENTRED AT THE REFERENCE POINT
AND MUST BE CORRECTED FOR CENTRE OF GAVITY SHIFT.

INPUTS

AL2 ANGLE OF ATTACK ABOUT *M2* - POSITIVE WIND FROM LEFT
AL3 ANGLE OF ATTACK ABOUT *M3* - POSITIVE WIND FROM ABOVE
DL ARRAY OF FOUR FIN DEFLECTIONS

MACH MACH NUMBER (REAL)

OUTPUTS

c ARRAY OF SIX AERODYNAMIC COEFFICIENTS
REAL DLC4) |, C(6) , MACH
COMMON/STABD/ A(6,5)

----------------------------- COMPUTE EQUIVALENT CONTROL SURFACE DEFL-
ECTIONS FROM THE FOUR SURFACE ANGLES
= 0.25%(DL(3) + DL(4) - DL(1) - DL(2))
DLY = 0. 50*(DL(1) + DL(3))
= 0.50*%(DL(2) + DL(4))
Cencecemcccccncmccceccncnnnnn- COMPUTE EACH MOMENT ASSUMING IT IS LINEAR
c IN EACH OF THE ARGUMENTS

Y*DLA + A(J, 2)*DLY + A(J,3)*0LZ + A(J, 4)*AL2
.+ AQJ,5)*AL3

000 O 0000000000000 00

110 CONTINUE
RETURN

END

19

(g] O OO0 0O0O0O00O0n

O 000000000 aOO0O0O0

OO0 00 OOOOO0OOOO0O00O000000

Oo0000

20

FUNCTION DOT (A, B)

-------------------------- COMPUTE VECTOR DOT PRODUCT OF TWO VECTORS.

PROGRAMMER V. B. WAYLAND

INPUTS

A AND B ARE ARRAYS OF LENGTH 3

QUTPUT

DOT IS A REAL FUNCTION RETURNING THE DOT PRODUCT OF A AND B
DIMENSION A3) . B(3)

22¥URN = AC1) * B(1) + A(2) * B(2) + A(3) * B(3)

END
SUBROUTINE INV ROT(VIN, RMX, VOUT)

------------------------- INVERSE VECTOR ROTATION. INVERSELY ROTATE

AN INPUT VECTOR, VIN, FROM ONE COORDINATE SYSTEM THRU A TRANSPOSED
ROTATION MATRIX, RMX. THE NEW VECTOR IS VOUT.

= (AB)T * A
INPUT
VIN INPUT 3 VECTOR
RMX 3X3 ROTATION MATRIX
OUTPUT
vout OUTPUT 3 VECTOR
DIMENSION VIN(3) , RMX(3,3), VOUT(3)
VOUT(1) = RMX(1, 1)*VIN(1) + RMX(2,1)*VIN(2) + RMX(3,1)*VIN(3)
VOUT(2) = RMX(1, V2)*VINCD) + RMX(2,2)*VIN(2) + RMX(3,2)*VIN(3)
Xg?ﬂéa) = RMX(1, J3IYVINCT) + RMX(2,3)*VIN(2) + RMX(3, V3)*VIN(3)

END
SUBROUTINE MMK(A NA, B, NB, C, NC, RM)
1A-0 30 DEC 68 MAKE A DIRECTION COSINE MATRIX

------------------------ ROUTINE GENERATES A DIRECTION COSINE MATRX

BY ROTATING IN ORDER

1)ANGLE C ABOUT THE NC AXIS
2)ANGLE B ABOUT THE NB AXIS
3)ANGLE A ABOUT THE NA AXIS

INPUTS
ANGLES A, B, C IN RADIANS

NA, NB, NC - A NUMBER BETWEEN 1 AND 3 CORRESPONDING TO AXIS
ABOUT WHICH EACH ANGLE IS ROTATED

OUTPUT

RM -- A 3X3 DIRECTION COSINE MATRIX

REAL AM(3,3) , BM(3,3) , CM(3,3) , RM(3,3)
REAL (9

NOTE FOR FORMING A DIRECTION COSINE MATRIX FROM EULER ANGLES THE
CONVENTION IS TO ROTATE ANGLE PHI ~ ABOUT THE NO. 1 AXIS, ANGLE
PSI ABOUT THE NO. 2 AXIS AND ANGLE THETA ABOUT THE NO. 3 AXIS

------------------------- GENERATE THE ROTATION MATRIX FOR EACH ANG.

CALL ROTMX (A
CALL ROTMX (B

CM
-------------------------- MATRIX MULTIPLY THE INTERMEDIATE MATRICES

CALL MML XY(BM,CM,T)
CALL MML XY(AM,T,RM)
RETURN

END
SUBROUTINE MML XY (X, Y

7 z)
-------------------------- MATRIX MULTIPLY ROUTINES FOR TWO 3X3

MATRICES. FIRST ENTRY CONTAINS NO TRANSPOSES
= (X) * (V)

G O00O0O00O00O0O0

o0oonn

[eXz1slzisXz s zisisinizizisinin]

INPUT

X FIRST 3X3 MATRIX

Y SECOND 3X3 MATRIX

OUTPUT

z RESULTING 3X3 MATRIX WHERE

ZC1,9) = XCI,D*YC1,0) + X(1,2)*Y(2,d) + X(I,3)*Y(3,)

DIMENSION X(3,3) , Y(3,3, 23,3

2¢1,1) = XC1,D*C1,1) + X(1,2)*Y(2,1) + X(1,3)*Y(3,1)

2€2'1) = X(201)*YC151) + X(2,2)*Y(2,1) + X(2,3)*Y(3,1)

2¢31) = XGL1*Y(101) + X(3,2)*¥(2,1) + X(3,3)*Y(3,1)

2€102) = XC1,1)*Y(1,2) + XC1,2)*Y(2,2) + X(1,3)*Y(3,2)

2€212) = X(2,1)*Y(1.2) + X(2,2)*Y(2,2) + X(2,3)*Y(3,2)

2¢312) = X(3,1)*Y(1.2) + X(3,2)*Y(2,2) + X(3,3)*Y(3,2)

Z€103) = X(1,D*Y(1,3) + X(1,2)*Y(2,3) + X(1,3)*Y(3,3)

2(2,3) = X(2,1)*Y(1.3) + X(2,2)*Y(2,3) + X(2,3)*Y(3,3)

2(3.3) = X(3,1)*Y(1.3) + X(3,2)*Y(2,3) + X(3,3)*Y(3,3)

RETURN

END

SUBROUTINE ROTMX(X, I, XM)

1A-0 30 DEC 68 ROTATION MATRIX
----------------------------- GENERATE BY STARTING WITH AN IDENTITY MATX

PUT THE COSINE OF ANGLE X ON THE DIAGONAL AND +SIN(X) AND -SIN(X)

ON OFF DIAGONALS

REAL XM(3,3)

INTEGER 11 T¢3), 11 T(3)

DATA 1nrts/2,3 ,1 /

. JIw3o1 2 7

X = SIN(X)

X = COS(X)

11 = 11 T(1)

1 = 111 T(D)

XMCI,1) = 1.0

XMCIL11)= 0.0

XM(11,1)= 0.0

XMC1,f11)= 0.0

XMCIT1,1)= 0.0

XMCIT,11)= CX

XMCIE, D= ex

XM(IT,i11) = sx

XMCIIE,11) = -SX

RETURN

END

SUBROUTINE VEC ROT (VIN, RMX, VOUT)

1A-0 25 NoV 68 VECTOR ROTATION
----------------------------- OTATE AN INPUT VECTOR, VIN, FROM ONE

SOORDINATE SYSTEM THRU A ROTATION MATRIX, RMX.' THE'NEW VECTOR IS

= (AB) * B

INPUT

VIN INPUT 3 VECTOR

RMX 3X3 ROTATION MATRIX

OUTPUT

vout OUTPUT 3 VECTOR

DIMENSION VIN(3) , RMX(3,3), VOUT(3)

VOUT(1) = RMX(1, D*VINC) + RMX(1, 2>*vxu<2> + RMX(1,3)*VIN(3)

VOUT(2) = RMX(2,1)*VINC1) + RMX(2.2)*VIN(2) + RMX(2,3)*VIN(3)

ngaéa) = RMX(3,1)*VIN(1) + RMX(3,2)*VIN(2) + RMX(3,3)*VIN(3)

END

21

22

APPENDIX D: MISSILA.CSL

PROGRAM - MISSILE AIRFRAME MODEL

" Modified from missil3.csl."

» Removed (in block 0) the dependency on nonstate variables "

w ¢p, C, and Q. This was accomplished by replicating the "

" code that evaluates these variables, so the corresponding "
" lines appear in both block 0 and in block 2. While this "

" may seem wasteful, note that in a parallel implementation,
» the lines would be evaluated simultaneously. If they were "
" not replicated (as in missil3.csl) then the parallel im-"

" plementation would have had to evaluate the blocks in

" stages, with some idle processors in each stage. (There is "
" another way of doing this, involving extra evaluations of "
the code on each processor, which is simpler to implement, "
" but has the same effect.) As an exercise, note that it is *
" not absolutely necessary to replicate all of the CD/C/Q lines "
" in both blocks, but the time savings is not very great. "

" This model runs under ACSL and generates the same output as "
" the original missile.cs! model."

Wecomnoocvoncacccnconnnn A GENERIC MISSILE AIRFRAME MODEL IS "
w DEVELOPED USING VECTORS FOR ALL THREE DIMENSIONAL QUANTITIES. "
W THIS MODEL WILL RESPOND TO FIN DEFLECTIONS SO REPRESENTING THE "
" OPEN LOOP AIRFRAME RESPONSE AND NEEDS A SEEKER, AUTOPILOT, "
" ACTUATOR, MOTOR AND TARGET MODULE IN ORDER TO EVALUATE GUIDANCE"

v EFFECTIVENESS "
INITIAL
ALGORITHM IALG = 4
MAXTERVAL MAXT = 0.010
NSTEPS NSTP = .
CINTERVAL CINT = 0.020
D It SET UP IN CASE DICTIONARY REQUIRED " -
LOGICAL DICTDM $ CONSTANT DICTDM = .FALSE.

IF(DICTDM) CALL LISTD(5)
DICTDM = .FALSE. -
e et PASS STABILITY DERIVATIVE MATRIX TO THE "
" COEFFICIENT GENERATION SUBROUTINE ™
CALL INIT(A)
END $" OF INITIAL "
DYNAMIC
DERIVATIVE
Mecemmecmceeeeneas ENVIRONMENT MODULE "

Wecoeaeoooonomnmanoaannx DEFINE ARRAYS AND CONSTANTS FOR MODULE "

CONSTANT G = 32.

R I e T VELOCITY OF SOUND - FUNCTION OF ALTITUDE *

TABLE vs, 1, 10 ...
/0. , 1.0e4 , 2.0E4 , 3.064 , 4.0E4 ...
, 5.064 ., 6.0E4 , 7.0E4 , B.0E4 , 9.0E4 ...
1 1186.5. , 1077.4 ., 1036.4 , 994.8 , 968.1 ...
1 968.1 | 968.1 , 970.9 , 977.6 , 984.3 /

T LOG OF ATMOSPHERIC DENSITY

TABLE LRO, 1, 10

/7 0.0 , 1.0e4 , 2.0e4 , 3.0E4 , 4.0E4 ...
., 5.0e6 , 6.0e4 , 7.0e4 , 8.0E4& , 9.0E4 ...
,~6.04191 ,-6.34502 ,-6.67084 ,-7.02346 ,-7.43995 ...
,=7.91851 ,-8.39664 ,-8.87953 ,-9.36448 ,-9.87239/

R LT MISSILE AIRFRAME MODULE "
Meoomoonmmmonaancccnncas DEFINE ARRAYS AND_ CONSTANTS FOR_MODULE "

REAL ME(9), VMM(3), NM(3), NME(3), DL(4), CD(3), C(6)
REAL VM(3). VMD(3), WMIC(3), RM(3), RMD(3), RMIC(3)
REAL WM(3), WMD(3), WMIC(3), A(30)
T MISSILE DIMENSIONAL CONSTANTS ®
CONSTANT B = 3.95 , CBAR = 5.62

CONSTANT s = 13.9 ! DXREF = 9.60

CONSTANT DL = 4%0.0

Moo oeeeceamemcaanaaaas INITIAL CONDITION VALUES ®

CONSTANT SIMIC = 0.0 , THMIC = 0.0 -

CONSTANT FIMIC = 0.0 " WMIC = 3*0.0

CONSTANT VMIC = 2154.8, 2*0.0

CONSTANT RMIC = 0.0, 10000.0, 0.0

Weceoeseoonmacmeonnonnnan DEFINE ELEMENTS OF STABILITY DERIVATIVE "
" MATRIX. LINEAR AERODATA IS ASSUMED FOR SIMPLICITY IN SUBROUTINE"
" COEFF. NON-LINEAR AERODATA MAY BE INCORPORATED BY REWRITING "

W THIS SUBROUTIxE "

CONSTANT = .
0.148 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 .es
, 0.0 '-0.26 , 0.0 . 0.0 0.0 '-0.286 ...
, 0.0 , 0.0 '-0.26 , 0.0 1 0.286 , 0.0 ..
' 0.0 ' 0.528 , 0.0 0.0 . 0.0 7 2.0 ..
. 0.0 . 0.0 ' 0.528 , o.o 1-2.0 1 0.0
Meolonlommannlomioaaaaal ROLL DAMPING - FUNCTION OF MACH NUMBER "
TABLE CLP, 1,5 ...
/ 0.0 , 0 , 1.0 , 1.2 , 2.0 ..
,-0.21 2 '-0.20 .,-0.19 ,-0.18 [
Ll SLOT e PITCH DAMPING - FUNCTION OF MACH NUMBER ™
TABLE cMa, 1, 5 ...
/0.0 , 0. , 1.0 , 1.2 , 2.0 ..
,-3.8 1-2.0 -1.5 1-2.0 20/

"block 0 : motor, aerodynamics, and rotational velocity dynamics"
procedural(UMD = VM, FIM, THM, SIM, WM)
ZBLOCK‘O
----------------------- MAKE *ME* MATRIX FROM ORIENTATION ANGLES "
CALL MMK(ME = FIM, 1, THM, 3, , 2)
----------------------- C LCULATE 'ACTUAL ATMOSPHERIC DENSITY "

RO = EXP(LROC(RM(2)))
Meoacccccaccacecccnann MAGNITUDE OF MISSILE VELOCITY *
MVM = SQRT(DOT(VM, VM))

Meoooosonnnnnennnnnnnas ROTATE VELOCITY TO MISSILE FRAME "
CALL VECROT(VMM = WM, ME)
----------------------- LATERAL AND VERTICAL ANGLES OF ATTACK "
A2 = ATANG-VMMCE) /WM 1))
= ATAN(VMM(2)/VMM(1))
Boeoenonen e eam e MACH NUMBER AND DYNAMIC PRESSURE "
MACH = MVM/VS(RM(2))
= 0.5*RO*MVM**2
Meooooonnnnommnennnans CALCULATE DAMPING DERIVATIVES *
= 0.5*CLP(MACH)*B*WM(1)/MVM
= 0.5*CMQ(MACH)*CBAR/MVM
CD(2) = CCVV*WM(2)

co(3) CCVV*WM(3)

L R bt GET MOMENTS AND FORCE AERO COEFFICIENTS *
u AND CORRECT LATERAL MOMENTS FOR SHIFT IN CENTRE OF GRAVITY "

u POSITION

CALL COEFF(C = AL2, AL3, DL, MACH)

C(2) C(Z) - (DXCS © DXREF)*C(6)/CBAR

c(3) C(3) + (DXCG - DXREF)*C(5)/CBAR

Momomoommmm oo MOTOR MODULE "

Weoweoononmvmnononacacoe SIMPLE VERSION WITH ZERO THRUST SPECIF- "
" YING A BURNT OR GLIDE CONDITION *

CONSTANT THRUST = 0.0 , MASS =
CONSTANT IXX = 8.77 , 1YY = 361.8
CONSTANT DXCG = 10.2

Mococcesneoccccsnenmnons CALCULATE ACCELERATION DUE TO AERODYNAMIC"
" : EFFECTS AND ROTATION RATE DERIVATIVES *
= Q*S*B*(C(1) + CD(1))/IXX
WMD(2) = Q*S*CBAR*(C(2) + CD(2))/IYY + WM(1)*WM(3)
= Q*S*CBAR*(C(3) + CD(3))/1YY - WM(1)*WM(2)
end $"of procedural"

Mesmmmscscsmnm=csaaansn= VECTOR INTEGRATE FOR ROTATIONAL VELOCITY ®
INTVC(WMD, WMIC)
“end of block 0"

"plock 1 : rotational posn dynamics"
procedural (SIMD = THM, FIM)
ZBLOCK 1
----------------------- YAW ANGLE DERIVATIVE ™
SIMD = (WM(2)*COS(FIM) - WM(3)*SIN(FIM))/COS(THM)

end $"of procedural®
Wecosowocnoornrancccocen INTEGRATE FOR ALL EULER ANGLES - NOTE USE"

w OF VECTOR INTEGRATOR FOR SINGLE ELEMENT "
SIM = INTVC(SIMD, SIMIC)

THM = INTEGCWM(2)*SIN(FIM) + WM(3)*COS(FIM), THMIC)

FIM = INTEG(WM(1) - SIMD*SIN(THM), FIMIC)

23

nend of block 1"

whlock 2 : translational velocity dynamics"
procedural(VMD = VM, FIM, THM,SIM,RM,WM)
ZBLOCK 2
----------------------- MAKE *ME* MATRIX FROM ORIENTATION ANGLES *
CALL MMK(ME = FIM, 1, THM 3, , 2)
----------------------- LCULATE ACTUAL ATMOSPHERIC DENSITY "

Ro = EXP(LRO(RM(2)))

Meveccommmccaccaccacacnn MAGNITUDE OF MISSILE VELOCITY "
MVM = SQRT(DOT(WVM, VM))

[L LL L CEPP PR ROTATE VELOCITY TO MISSILE FRAME *

, ME)
----------------------- LATERAL AND VERTICAL ANGLES OF ATTACK "

AL = ATAN(-VMM(3)/VMM(1))

AL3 = ATAN(VMM(Z)/VMM(1))

Meomomooccacaaaaaaaocen ACH NUMBER AND DYNAMIC PRESSURE "
MACH = MVM/VS(RM(2))

Q = 0.5*RO*MVM**2

T e CALCULATE DAMPING DERIVATIVES "
CDC1) = 0.5*CLP(MACH)*B*WM(1)/MVM

CCVW = 0.5*CMQ(MACH)*CBAR/MVM

CD(2) = CCVV*WM(2)

CD(3) = CCVW*WM(3)

Mecccuooomomonoonnnanacn GET MOMENTS AND FORCE AERO COEFFICIENTS *
" AND CORRECT LATERAL MOMENTS FOR SHIFT IN CENTRE OF GRAVITY "

" POSITION

CALL COEFF(C AL2, AL3, DL, MACH)

C(2) = C(2) - (DXCG * DXREF)*C(6)/CBAR
c(3) = C(3) + (DXCG - DXREF)*C(5)/CBAR

“~---next three lines have been moved from posn in missil2"
= (Q*S*C(4) + THRUST)/MASS
NM(2) = Q*S*C(5)/MASS
= Q¥S*C(6)/MASS
Meccccorooeuuucvonnccana ROTATE ACCELERATION VECTOR TO EARTH FRAME"
CALL INVROT(NME = NM, ME)
----------------------- CALCULATE VELOCITY DERIVATIVES IN THE *

" EARTH FRAME - NEEDS GRAVITY ADDING IN "
VMD(1) = NME(1)

VMD(2) = NME(2) - G

VMD(3) = NME(3)

----------------------- TRANSLATIONAL VELOCITY ®
VM = INTVC(VMD, VMIC)
end of block 2"

"block 3 : translational position dynamics"

procedural(RMD = W)

ZBLOCK-3

----------------------- TRANSLATIONAL POSITION - NOTE THE DERIV~ "

" ATIVE VECTOR CANNOT BE A STATE VECTOR (VELOCITY) AS WELL "

CALL XFERB(RMD = VM, 3)

end $" of procedural "

RM = INTVC(RMD, RMIC)

wend of block 3"

END $" OF DERIVATIVE *

Woemeoommnonceomonnaaes STOP ON ELAPSED TIME "
CONSTANT TSTP = 1.99
TERMT(T .GE. TSTP)

END $" OF DYNAMIC *

END $" OF PROGRAM "

SUBROUTINE INIT(C)
Ce---ceseccccanoracconncncannn FORTRAN SUBROUTINE WHOSE ONLY JOB IS TO
C TRANSFER THE STABILITY DERIVATIVE MATRIX TO AN ARRAY IN LABELLED
c COMMON SO THAT IT MAY BE ACCESSED IN SUBROUTINE COEFF. NOTE NO
g COMMON BLOCKS MAY BE DEFINED IN THE ACSL MODEL DEFINITION SECTION

COMMON/STABD/ A(6,5)
DATA LENGTH / 30 /

c

T TRANSFER BLOCK
CALL XFERB(C, LENGTH, A)
RETURN

¢
END

24

OO0 O O0O000000000000O0N0O0

O OO0O00O0O0O0O0O00O0n

[g]

0O O000aO0O0O00000

szl Xzinlig]

SUBROUTINE COEFF(AL2, AL3 DL MACH, C)
----------------------------- PUTES SIX AERODYNAMIC COEFFICIENTS -

THREE MOMENTS, C(1), C(Z) AND C(3), AND THREE FORCES, C(4), C(5)
AND C(6). MOMENTS ARE ABOUT AXES CENTRED AT THE REFERENCE POINT
AND MUST BE CORRECTED FOR CENTRE OF GAVITY SHIFT.

INPUTS

AL2 ANGLE OF ATTACK ABOUT *M2* - POSITIVE WIND FROM LEFT
AL3 ANGLE OF ATTACK ABOUT *M3* - POSITIVE WIND FROM ABOVE
DL ARRAY OF FOUR FIN DEFLECTIONS

MACH MACH NUMBER (REAL)

QUTPUTS '

c ARRAY OF SIX AERODYNAMIC COEFFICIENTS

REAL oL(4) , C(6) , MACH

COMMON/STABD/ A(6,5)

----------------------------- COMPUTE EQUIVALENT CONTROL SURFACE DEFL-
ECTIONS FROM THE FOUR SURFACE ANGLES

DLA = 0.25*(DL(3) + DL(4) - DL(1) - DL(2))

DLY = 0.50*(DL(1) + DL(3))

bLZ = 0.50*(DL(2) + DL(4))
-------------------------- COMPUTE EACH MOMENT ASSUMING IT IS LINEAR

IN EACH OF THE ARGUMENTS

DO 1104 =1, 6

Ch = AQJ,1)*DLA + A(J,2)*DLY + A(J,3)*DLZ + A(J,4)*AL2

. + AW, J5)*AL3
110 CONTINUE

RETURN

END

FUNCTION DOT (A, B)

----------------------------- COMPUTE VECTOR DOT PRODUCT OF TWO VECTORS.
PROGRAMMER V. B. WAYLAND
INPUTS
A AND B ARE ARRAYS OF LENGTH 3
OUTPUT
DOT 1S A REAL FUNCTION RETURNING THE DOT PRODUCT OF A AND B
DIMENSION AG) , B(®)
poT = AC1) * B(1) + A(2) * B(2) + A(3) * B(3)
RETURN
_END

SUBROUTINE INV ROT(VIN, RMX, VOUT)

o e LT INVERSE VECTOR ROTATION. INVERSELY ROTATE

AN INPUT VECTOR, VIN, FROM ONE COORDINATE SYSTEM THRU A TRANSPOSED
ROTATION MATRIX RMX. THE NEW VECTOR IS VOUT.
= (AB)T * A
INPUT
VIN INPUT 3 VECTOR
RMX 3X3 ROTATION MATRIX
OUTPUT
vout OUTPUT 3 VECTOR
DIMENSION VIN(3) , RMX(3,3), VOUT(3)
VOUT(1) = RMX(1,1)*VIN(1) + RMX(2,1)*VIN(2) + RMX(3,1)*VIN(3)
VOUT(2) = RMX(1, F2)*VINCT) + RMX(2,2)*VIN(2) + RMX(3,2)*VIN(3)
Xg?ﬁéa) = RMX(1, T3)*VINCT) + RMX(2,3)*VIN(2) + RMX(3,3)*VIN(3)

SUBROUTINE MMK(A, NA, B, NB, C, NC, RM)

1A-0 30 DEC 68 MAKE'A DIRECTION COSINE MATRIX
-------------------------- ROUTINE GENERATES A DIRECTION COSINE MATRX

BY ROTATING IN ORDER

1)ANGLE C ABOUT THE NC AXIS
2)ANGLE B ABOUT THE NB AXIS

[g) OOOO0O0O0 OO0O00OOOO0OO0

O OO0O000O0OOO000O00n

[2X2Xgis)g]

(2]

3)ANGLE A ABOUT THE NA AXIS
INPUTS

ANGLES A, B,

NA,

OUTPUT
RM -- A 3X3 DIRECTION COSINE MATRIX
AM(3,3) , BM(3,3) , CM(3,3) , RM(3,3)
‘M

REAL
REAL

NOTE FOR FORMING A DIRECTION COSINE MATRIX FROM EULER ANGLES THE
CONVENTION IS TO ROTATE ANGLE PHI
PSI ABOUT THE NO. 2 AXIS AND ANGLE THETA ABOUT THE NO. 3'AXIs

---------------------------- GENERATE THE ROTATION MATRIX FOR EACH ANG.
CALL ROTMX (
CALL ROTMX (

CALL ROTMX (

C IN RADIANS
NB, NC - A NUMBER BETWEEN 1 AND 3 CORRESPONDING TO AXIS

ABOUT WHICH EACH ANGLE IS ROTATED

CALL MML XY(BM,CM,T)
CALL MML XY(AM,T,RM)
RETURN

END
SUBROUTINE MML XY (X, Y

MATRICES.
Z2=()*

INPUT

X
Y

OUTPUT

4
(1,0
DIMENSION

RETURN

END
SUBROUTINE ROTMX(X, I,
1A-0

MATRIX MULTIPLY THE INTERMEDIATE MATRICES

2)
MATRIX MULTIPLY ROUTINES FOR TWO 3X3

ABOUT THE NO. 1 AXIS, ANGLE

FIRST ENTRY CONTAINS NO TRANSPOSES

1§ 5]

FIRST 3X3 MATRIX
SECOND 3X3 MATRIX

RESULTING 3X3 MATRIX WHERE
XCI,1*Y(1,d) + X(I1,2)*Y(2,4) +

Y(3,3) , 2(3,3)
X€1,2)*Y(2,1) +

X(3,3)

I*Y(1
»*Y(1
*Y(1
*Y(1
*Y(1
*¥(1

(
(
(3,1
()
)
I*Y(1,
)
)

s
,
l

.- -wwww

1N
1)
1)
2)
2)
2)
3
*Y(1.3)

X
X
X
X
X
X
X
X *Y(1,3)

1,1
2.1
301
1 1
X(2

(3,1
1,1
2,1
1

30 DEC 68

ON OFF DIAGONALS

REAL
INTEGER

DATA

GENERATE BY STARTING WITH AN IDENTITY MATX
PUT THE COSINE OF ANGLE X ON THE DIAGONAL AND +SIN(X) AND -SIN(X)

Nt N ot NN

X(3,2)*Y(2,3)

XM)
OTATION MATRIX

XM(3,3)
II T(3), II1 T(3)

II T /2, 3
17/3,

SIN(X)

oo

x
(]
x

NI OO -
.
[=Y-)
n
x

-SX

1/
2/

+
+
+
+
+
+
+
+

X¢I,3)*Y(3,J)

XC1.3)*v(
X(2.3)*Y(

N M Nt N Nt I NP N

X(3,3)*Y(3,3)

26

OOO00OOO0000O0000

RETURN

END

SUBROUTINE VEC ROT (VIN, RMX, VOUT)

1A-0 25 NOV 68 VECTOR ROTATION
----------------------------- ROTATE AN INPUT VECTOR, VIN, FROM ONE

COORDINATE SYSTEM THRU A ROTATION MATRIX, RMX. THE NEW VECTOR IS

A= (AB) * B

INPUT

VIN INPUT 3 VECTOR

RMX 3X3 ROTATION MATRIX

oUTPUT

VOUT OUTPUT 3 VECTOR

DIMENSION VING3) |, RMX(3,3), VOUT(3)

VOUT(1) = RMXC1, D*VINCE) + RMX(1,2)*VINC2) + RMX(1,3)*VIN(3)

VOUT(2) = RMX(2, 1)*VIN(1) + RMX(2,2)*VIN(2) + RMX(2,3)*VIN(3)

¥S¥ﬂéﬁ’ = RMX(3, 1)*VINC1) + RMX(3,2)*VIN(2) + RMX(3,3)*VIN(3)

END

27

28

APPENDIX E: MISSILS.CSL

PROGRAM - MISSILE AIRFRAME MODEL
" Modified from missilé.csl.®
" Makes an approximation by evaluating aerodynamics coeffs and "
" atmosEheric damping in parallel with all derivatives. This v
" has the effect of declaring C, CD, and Q as state variables, ¥
* and they are always used one integration time step after "
» they are evaluated (i. e., they are stale by DT). The result,”
® however, is a significantly faster simulation (if run in "
" paratlel) with v1rtuallx identical results, because we care-"
n fully selected slowly-changing subsystems to make into false "
" state variables. Note how many fewer lines are in the worst
" block, compared with missil3. *
T A GENERIC MISSILE AIRFRAME MODEL IS "
W DEVELOPED USING VECTORS FOR ALL THREE DIMENSIONAL QUANTITIES. "
" THIS MODEL WILL RESPOND TO FIN DEFLECTIONS SO REPRESENTING THE "
" OPEN LOOP AIRFRAME RESPONSE AND NEEDS A SEEKER, AUTOPILOT, "
" ACTUATOR, MOTOR AND TARGET MODULE IN ORDER TO EVALUATE GUIDANCE"
" EFFECTIVENESS "
RS T EEEEELLTLE ENVIRONMENT MODULE *
Weceooonocccecsnncccncex DEFINE ARRAYS AND CONSTANTS FOR MODULE “
CONSTANT G = 32.2
Wecomcosssanccncncocnac- VELOCITY OF SOUND - FUNCTION OF ALTITUDE "
TABLE Vs , 10 e
7 0.0 , 1.064 , 2.0E4 , 3.0E4 , 4.0E4 ...
, 5,066 , 6.0e6 , 7.0e4 , 8.0E4 , 9.0E4¢ ...
, 1186.5 , 1077.4 , 1036.4 , 994.8 , 968.1 ...
, 968.1 , 968.1 , 970. , 977.6 , 984.3
Neeaemennccerescccccconen LOG OF ATMOSPHERIC DENSITY "
TABLE LRO, 1, 10 ...
0.0 , 1.06 , 2.0e6 , 3.0e4 , 4.0E4 ...
, 5.066 , 6.0E4 , 7.0e4 , B.0E4 , 9.0E46 ...
,-6.06191 ,-6.34502 ,-6.67084 ,-7.02346 ,-7.43995 ...
,-7.91851 ,-8.39664 ,-8.87953 ,-9.36448 ,-9.87239/
Wevwvoonramneoeooannae-e MISSILE AIRFRAME MODULE "
Wevooocconesoncccccacen- DEFINE ARRAYS AND CONSTANTS FOR MODULE *“
REAL ME(9), VMM(3), NM(3), NME(3), DL(4), CD(3), C(6)
REAL VN(3). VMD(3). wMIC(3), RM(3), RMD(3), RMIC(3)
REAL WM(3), WMD(3), WMIC(3), A(30)
real CDIC(g), cDDOT(3), CIC(6), CDOT(6)
Nevoonconeanencacncosean MISSILE DIMENSIONAL CONSTANTS *
CONSTANT B =3.95 , CBAR = 5.62
CONSTANT S = 13.9 , DXREF = 9.60
CONSTANT DL = 4*0.0
Becocmvanccnucornacccces INITIAL CONDITION VALUES "
CONSTANT SIMIC = 0.0 , THMIC = 0.0
CONSTANT FIMIC = 0.0 , WMIC = 3*0.0
CONSTANT VMIC = 2154.8, 2*0.0
CONSTANT RMIC = 0.0, 10000.0, 0.0
Weoocwssmnecnccvnoanccas DEFINE ELEMENTS OF STABILITY DERIVATIVE "
" MATRIX. LINEAR AERODATA IS ASSUMED FOR SIMPLICITY IN SUBROUTINE"
" COEFF. NON-LINEAR AERODATA MAY BE INCORPORATED BY REWRITING "
" THIS SUBROUTINE "
CONSTANT A= ves
0.148 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ves
, 0. ,~0.26 , 0.0 , 0.0 , 0.0 ,-0.286 ...
, 0.0 , 0.0 ,-0.26 , 0.0 , 0.286 , 0.0 .
, 0.0 , 0.528 , 0.0 , 0.0 , 0.0 , 2.0
, 0.0 , 0.0 , 0.528 , 0.0 ,-2.0 , 0.0
Hecoenuanocccnernanncons ROLL DAMPING - FUNCTION OF MACH NUMBER "
TABLE CLP, 1, 5 vee
/ 0.0 , 0.8 , 1.0 ., 1.2 , 2.0 ces
,-0.21 ,~0.21 ,-0.20 ,-0.19 ,-0.18 /
Hecsssncccscsssmsascansss PITCH DAMPING - FUNCTION OF MACH NUMBER *
TABLE cMa, 1,5 ...
/ 0.0 , 0.8 , 1.0 , 1.2 , 2.0 N
,~3.8 ,-2.0 ,-1.5 ,-2.0 ,-2.1 /
INITIAL
ALGORITHM IALG = 4
MAXTERVAL MAXT = 0.010
NSTEPS NSTP =
CINTERVAL CINT = 0.020

---------------------- SET UP IN CASE DICTIONARY REQUIRED *

29

LOGICAL DICTDI $ CONSTANT DICTDM = .FALSE.
IF(DICTDM) CALL LISTD(S)
DlCTDH = .FALSE.

----------------------- PASS STABILITY DERIVATIVE MATRIX TO THE "
" COEFFICIENT GENERATION SUBROUTINE "
CALL INIT(A)

"preevaluate C, CD, and @ initial conditions"
CALL MMK(ME = FIMIC 1, THMIC, 3, SIMIC, 2)
----------------------- ALCULATE ACTUAL ATMOSPHERIC DENSITY "

RO = EXP(LRO(RMIC(2)))
Meceeoneocacccensenaannas MAGNITUDE OF MISSILE VELOCITY ®
MVM = SQRT(DOT(VMIC, VM

c)
Momeeeaomcmemeaaaaoasl ROTATE VELOCITY TO MISSILE FRAME "

CALL VECROT(VMM = VMIC, ME)

----------------------- LATERAL AND VERTICAL ANGLES OF ATTACK "
ALZ = ATAN(- VMM(3)IVMM(1))
AL3 = ATAN(VMM(Z)/VMM())
econsnanacosnmencusanas ACH NUMBER AND DYNAMIC PRESSURE "
MACH = MVM/VS(RMIC(Z))
Q = 0.5*RO*MVM**2

[T e CALCULATE DAMPING DERIVATIVES "
CDICC1) = 0.5*CLP(MACH)*B*WMIC(1)/MVM

ccw = 0.5*CMQ(MACH)*CBAR/MVM
CDIC(2) = CCVV*WMIC(2)
CDIC(3) = CCVV*WMIC(3)

----------------------- GET MOMENTS AND FORCE AERO COEFFICIENTS "
% AND CORRECT LATERAL MOMENTS FOR SHIFT IN CENTRE OF GRAVITY "

" POSITION ®
CALL COEFF(CIC AL2, AL3, DL, MACH)
CIC(2) = CIC(2) - (DXCG - DXREF Y*C1C(6)/CBAR
CIC(3) = CIC(3) + (DXCG - DXREF)*CIC(5)/CBAR
END $" OF INITIAL "
DYNAMIC

DERIVATIVE

"block 0 : aerodynahlcs, and rotational 'velocity dynamics"
procedural(HMD =CD, Q, C, W)
ZBLOCK=0

CONSTANT IXX = 8.77 , 1YY = 361.8

L LR L L CALCULATE ACCELERATION DUE TO AERODYNAMICH
u EFFECTS AND ROTATION RATE DERIVATIVES "
= Q*S*B*(C(1) + CD(1))/IXX
WMD(2) = Q*S*CBAR*(C(2) + CD(2))/IYY + WM(1)*WM(3)
= Q*S*CBAR*(C(3) + CD(3))/IYY - WM(1)*WM(2)
end $"of procedural®

Hecocscnacecncccccnacane VECTOR INTEGRATE FOR ROTATIONAL VELOCITY "
INTVC(WMD, WMIC)
"end of block 0“

"block 1 : rotational posn dynamics"
procedural (SIMD = WM, THM, FIM) »
ZBLOCK~1
----------------------- YAW ANGLE DERIVATIVE "
SIMD = (WM(2)*COS(FIM) - WM(3)*SIN(FIM))/COS(THM)

end $"of procedural®

SOREELEELIEEELEELEELLLES INTEGRATE FOR ALL EULER ANGLES - NOTE USE"
" OF VECTOR INTEGRATOR FOR SINGLE ELEMENT "
INTVC(SIMD, SIMIC)

INTEG(WM(2)*SINCFIM) + HH(3)*COS(FIM), THMIC)
INTEG(WM(1) - SIMD*SIN(THM), FIMIC)

- —
—r
=x

wun

end of block iw

“block 2 : translational velocity dynamics"
procedural(VMD Q, C, FIM, THM, SIM)
ZBLOCK=2
----------------------- MOTOR MODULE *

(RCEEEEPTTRSSERPPTLEREE SIMPLE VERSION WITH ZERO THRUST SPECIF- "
" YING A BURNT OR GLIDE CONDITION "

CONSTANT THRUST = 0.0 MASS = 8.77
----------------------- MAKE *ME* MATRIX FROM ORIENTATION ANGLES *
CALL MMK(ME = FIM, 1, THM, 3, SIM, 2
n----next three lines have been moved from posn in missil2"
= (Q*S*C(4) + THRUST)/MASS
NM(2) = Q*S*C(5)/MASS
= Q¥S*C(6)/MASS
Moccuceosroccccennnannan ROTATE ACCELERATION VECTOR TO EARTH FRAME"
CALL INVROT(NME = NM, ME)
----------------------- CALCULATE VELOCITY DERIVATIVES IN THE
" EARTH FRAME - NEEDS GRAVITY ADDING IN "

VMD(1) = NME(1)
VMD(2) = NME(2) - G
VMD(3) = NME(3)

----------------------- TRANSLATIONAL VELOCITY ®
= INTVC(VMD, VMIC)
"end of block 2"

mblock 3 : translational position dynamics"

procedural(RMD VM)

ZBLOCK‘3

---------------------- TRANSLATIONAL POSITION - NOTE THE DERIV-
" ATIVE VECTOR CANNOT BE A STATE VECTOR (VELOCITY) AS WELL "
CALL XFERB(RMD = VM, 3)
end $" of procedural "
INTVC(RMD, RMIC)

“end of block 3"

"block 4 : atmospheric damplng "
procedural(CDDOT WM, VM, RM)

ZBLOCK‘A

----------------------- MAGNITUDE OF MISSILE VELOCITY *
MVM = SQRT(DOT(VM, WM))
Wessmcoacvovasnancsusens CALCULATE ACTUAL ATMOSPHERIC DENSITY ®
RO = EXP(LRO(RM(2)))
Weceeooocmoncnonmonnacon MACH NUMBER AND DYNAMIC PRESSURE "
MACH = MVM/VS(RM(2))
Q = 0.5*RO*MVM**2
Wooooocoeoonoomacoasnnn- CALCULATE DAMPING DERIVATIVES *
€D(1) = 0.5*CLP(MACH)*B*WM(1)/MVM
ccw = 0.5*CMQ(MACH)*CBAR/MVM
€D(2) = CCVV*WM(2)

cD(3) = CCVV*WM(3)
"make zero derivatives for false state"
CDDOT(1) g

CDDOT(2)
cDDOT(3)
end $" of procedural "
“perform an integration on our false states that will not "
"change the values assigned above '
= intvc(CDDOT, CDIC)
vend of block 4"

"block 5 : aerodynamic coefficients "
procedural(CDOT = FIM, THM, SIM, RM, VM)
ZBLOCK=5
CONSTANT DXCG = 10.2
----------------------- MAKE *ME* MATRIX FROM ORIENTATION ANGLES "
CALL MMK(ME = FIM, 1, THM, 3, , 2)
----------------------- GNITUDE OF MISSILE VELOCITY *

))
Momaoaoonooomooooonannse EROTATE VELOCITY TO MISSILE FRAME “
, ME)
----------------------- LATERAL AND VERTICAL ANGLES OF ATTACK "

ALZ = ATAN(- VMM(S)/VMH(1))

AL3 = ATAN(VMM(Z)/VHM(1))

B eacaecaemc e H NUMBER but not DYNAMIC PRESSURE "
MACH = MVM/VS(RM(2))

S R GET MOMENTS AND FORCE AERO COEFFICIENTS “
" AND CORRECT LATERAL MOMENTS FOR SHIFT IN CENTRE OF GRAVITY ®

" POSITION

CALL COEFF(C = AL2, AL3, DL, MACH)

C(2) = C(2) - (DXCG - DXREF)*C(6)/CBAR
C(3) C(3) + (DXCG - DXREF)*C(5)/CBAR

“make zer

o derivatives for false state"
CDOT(1) =0
cDOT(2) =0
cooT(3) =0
CDOT(4) =10

30

€DOT(5) 0

CDOT(6)]

end $" of procedural "

uperform an integration on our false states that will not "

wchange the values assigned above

c = intve(CDOT, CIC)
nend of block 5"

END $" OF DERIVATIVE "

Momoocmmmeeaacomacaaaen STOP ON ELAPSED TIME "
CONSTANT TSTP = 1.9
TERMT(T .GE. TSTP)

END $" OF DYNAMIC "
END $" OF PROGRAM "

SUBROUTINE INIT(C)
C----esevermmemcecanmcuaccacnn. FORTRAN SUBROUTINE WHOSE ONLY JOB IS TO

c TRANSFER THE STABILITY DERIVATIVE MATRIX TO AN ARRAY IN LABELLED
c COMMON SO THAT IT MAY BE ACCESSED IN SUBROUTINE COEFF. NOTE NO
c COMMON BLOCKS MAY BE DEFINED IN THE ACSL MODEL DEFINITION SECTION
c

COMMON/STABD/ A(6,5)
c DATA LENGTH / 30 /

Cromommmmmccossanancsaeaaanas TRANSFER BLOCK
CALL XFERB(C, LENGTH, A)
RETURN

END
SUBROUTINE COEFF(AL2, AL3, DL, MACH, C)
C-----veco-cececonsomnmcnacaann COMPUTES SIX AERODYNAMIC COEFFICIENTS -

o THREE MOMENTS, C(1), C(2) AND C(3), AND THREE FORCES, C(4), C(5)
c AND C(6). MOMENTS ARE ABOUT AXES CENTRED AT THE REFERENCE POINT
g AND MUST BE CORRECTED FOR CENTRE OF GAVITY SHIFT.
g INPUTS
C AL2 ANGLE OF ATTACK ABOUT *M2* - POSITIVE WIND FROM LEFT
C AL3 ANGLE OF ATTACK ABOUT *M3* - POSITIVE WIND FROM ABOVE
c DL ARRAY OF FOUR FIN DEFLECTIONS
E MACH MACH NUMBER (REAL)
g QUTPUTS
g c ARRAY OF SIX AERODYNAMIC COEFFICIENTS
c REAL DL(4) , C(6) , MACH
c COMMON/STABD/ A(6,5)
Ce---wesssraccceccucncaconcnee COMPUTE EQUIVALENT CONTROL SURFACE DEFL-
c ECTIONS FROM THE FOUR SURFACE ANGLES
DLA = 0.25*(DL(3) + DL(4) - DL(1) - DL(2))
DLY = 0.50%(DL(1) + DL(3))
DLZ = 0.50*(DL(2) + DL(4))
C---emm=cvesscmcsmncccnecnnne- COMPUTE EACH MOMENT ASSUMING IT IS LINEAR
c IN EACH OF THE ARGUMENTS
po110J=1,6
C = ACJ,1)*DLA + A(J,2)*OLY + A(J,3)*DLZ + A(J,4)*AL2
. + A(J,5)*AL3
110 CONTINUE
RETURN
C
END
FUNCTION DOT (A, B)
g ----------------------------- COMPUTE VECTOR DOT PRODUCT OF TWO VECTORS.
g PROGRAMMER V. B. WAYLAND
C INPUTS
c
E A AND B ARE ARRAYS OF LENGTH 3
c QUTPUT
C
g DOT IS A REAL FUNCTION RETURNING THE DOT PRODUCT OF A AND B
c DIMENSION A(3) , B(3)

Dot = AC1) * B(1) + A(2) * B(2) + A(3) * B(3)
RETURN

31

O O0O000O0O00O0O0O0O0000

(e Xsizizle]

O O0O000O00O00O0O0O0O00

OoOO0QOOOO0O000O00O00000O0

END
SUBROUTINE INV ROT(VIN, RMX, VOUT)

-------------------------- INVERSE VECTOR ROTATION. INVERSELY ROTATE

AN INPUT VECTOR, VIN, FROM ONE COORDINATE SYSTEM THRU A TRANSPOSED
ROTATION MATRIX, RMX. THE NEW VECTOR IS VOUT.

= (AB)T * A
INPUT
VIN INPUT 3 VECTOR
RMX 3X3 ROTATION MATRIX
OUTPUT
vout OUTPUT 3 VECTOR
DIMENSION VIN(3) , RMX(3,3), VOUT(3)
VOUT(1) = RMXC1,1)*VIN(C1) + RMX(2,1)*VIN(2) + RMX(3,1)*VIN(3)
VOUT(2) = RMX(1, T2Y*VINCT) + RMX(2,2)*VIN(2) + RMX(3 2)*VIN(3)
vgus(i) = RMX(1, V3Y*VINCT) + RMX(Z 3)*VIN(2) + RMX(3,3)*VIN(3)
RETUR

END
SUBROUTINE MMK(A, NA, B, NB, C, NC, RM)
1A-0 30 DEC 68 MAKE' A DIRECTION COSINE MATRIX

-------------------------- ROUTINE GENERATES A DIRECTION COSINE MATRX

BY ROTATING IN ORDER

1)ANGLE C ABOUT THE NC AXIS
2)ANGLE B ABOUT THE NB AXIS
3)ANGLE A ABOUT THE NA AXIS

INPUTS
ANGLES A, B, C IN RADIANS

NA, NB, NC - A NUMBER BETWEEN 1 AND 3 CORRESPONDING TO AXIS
ABOUT WHICH EACH ANGLE IS ROTATED

ouTPUT

RM -- A 3X3 DIRECTION COSINE MATRIX

REAL AM(3,3) , BM(3,3) , CM(3,3) , RM(3,3)
REAL (9

NOTE FOR FORMING A DIRECTION COSINE MATRIX FROM EULER ANGLES THE
CONVENTION IS TO ROTATE ANGLE PH! ~ ABOUT THE NO. 1 AXIS, ANGLE
PSI ABOUT THE NO. 2 AXIS AND ANGLE THETA ABOUT THE NO. 3'aXIs

-------------------------- GENERATE THE ROTATION MATRIX FOR EACH ANG.

CALL ROTMX (A, NA, AM)
CALL ROTMX (B, NB, BM)
CALL ROTMX (C, NC, CM)

-------------------------- MATRIX MULTIPLY THE INTERMEDIATE MATRICES

CALL MML XY(BM,CM,T)
CALL MML XY(AM,T,RM)
RETURN

END
SUBROUTINE MML XY (X, Y

2)
-------------------------- MATRIX MULTIPLY ROUTINES FOR TWO 3X3

MATRICES. FIRST ENTRY CONTAINS NO TRANSPOSES

= (X)) * (V)
INPUT
X FIRST 3X3 MATRIX
Y SECOND 3X3 MATRIX
QUTPUT

z RESULTING 3X3 MATRIX WHERE
2¢1,4) = XCIL,1)*Y(1,0) + X(1,2)*Y(2,J) + X(1,3)*Y(3,4)

DIMENSION X(3,3) , Y(3,3), 23,

2¢1,1) = XQ1,1*Y(1,1) + X(1,2)*Y(2,1) + X(1,3)*(3,1)
2(2,1) = X(2 1)*Y(1,1) + X(Z,Z)*Y(2,1) + X(2,3)*Y(3,1)
2(3.1) = XG,1D*Y(1,1) + X(3,2)*Y(2,1) + X(3,3)*Y(3,1)
2€102) = X, 1*Y(1.2) + X(1,2)*Y(2,2) + X(1,3)*Y(3,2)
2(202) = XC2,1)*Y(1.2) + X(2,2)*Y(2,2) + X(2,3)*Y(3,2)
2(312) = XGI1I*Y(1.2) + X(3,2)*Y(2,2) + X(3,3)*Y(3,2)

32

OoOO000

OOOOOODOO0O0O0000

RETURN

X¢1,1)*Y(1,3
X(2,1)*v(1,3
X(3,1)*v(1,3

)+ X(1,2)*Y(2,3) + X(1,3)*Y(3,3)
)+ X(2,2)*Y(2,3) + X(2,3)*Y(3,3)
) + X(3,2)*Y(2,3) + X(3,3)*Y(3,3)

END
SUBROUTINE ROTMX(X, I, XM)

1A-0 30 DEC 68 ROTATION MATRIX
----------------------------- GENERATE BY STARTING WITH AN IDENTITY MATX

PUT THE COSINE OF ANGLE X ON THE DIAGONAL AND +SIN(X) AND -SIN(X)

ON OFF DIAGONALS

REAL XM(3,3)

INTEGER 1T T(3), HI T

DATA 1mHrTs/72,3 ,17/

; JIT/3,1 ,2 /

X = SIN(X)

cX = COS(X)

11 = I1 T(1)

111 = 111 ™D

XM(I,1) = 1.0

XMCI,11)= 0.0

XM(11,1)= 0.0

XMCI,I11)= 0.0

XMCIII,1)= 0.0

XMCII,11)= CX

XMCII1,111)= ex

XMCIT,I11) = sX

XMCIIE, 1) = -SX

RETURN

END

SUBROUTINE VEC ROT (VIN, RMX, VOUT)

1A-0 25 Nov 68 VECTOR ROTATION
----------------------------- ROTATE AN INPUT VECTOR, VIN, FROM ONE

388$DINATE SYSTEM THRU A ROTATION MATRIX, RMX.' THE NEW VECTOR IS

A =(AB) *B

INPUT

VIN INPUT 3 VECTOR

RMX 3X3 ROTATION MATRIX

oUTPUT .

vout OUTPUT 3 VECTOR

DIMENSION VIN(3) , RMX(3,3), VOUT(3)

VOUT(1) = RMXCT, 1D*VINCI) + RMXC1,2)*VING2) + RMX(1,3)*VIN(3)

VOUT(2) = RMX(2, 1)*VINC1) + RMX(2.2)*VIN(2) + RMX(2,3)*VIN(3)

VOUT(3) = RMX(3,1)*VINC1) + RMX(3,2)*VIN(2) + RMX(3,3)*VIN(3)

RETURN

END

33

